Skip to main content
Log in

Boosting faradaic efficiency of CO2 electroreduction to CO for Fe−N−C single-site catalysts by stabilizing Fe3+ sites via F-doping

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The atomically dispersed Fe3+ sites of Fe−N−C single-site catalysts (SSCs) are demonstrated as the active sites for CO2 electroreduction (CO2RR) to CO but suffer from the reduction to Fe2+ at ∼ −0.5 V, accompanied by the drop of CO faradaic efficiency (FECO) and deterioration of partial current (JCO). Herein, we report the construction of F-doped Fe−N−C SSCs and the electron-withdrawing character of fluorine could stabilize Fe3+ sites, which promotes the FECO from the volcano-like highest value (88.2%@−0.40 V) to the high plateau (> 88.5%@−0.40–−0.60 V), with a much-increased JCO (from 3.24 to 11.23 mA·cm−2). The enhancement is ascribed to the thermodynamically facilitated CO2RR and suppressed competing hydrogen evolution reaction, as well as the kinetically increased electroactive surface area and improved charge transfer, due to the stabilized Fe3+ sites and enriched defects by fluorine doping. This finding provides an efficient strategy to enhance the CO2RR performance of Fe−N−C SSCs by stabilizing Fe3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Do, T. N.; You, C.; Kim, J. A CO2 utilization framework for liquid fuels and chemical production: Techno-economic and environmental analysis. Energy Environ. Sci. 2022, 15, 169–184.

    Article  CAS  Google Scholar 

  2. Haszeldine, R. S. Carbon capture and storage: How green can black be? Science 2009, 325, 1647`–1652.

    Article  CAS  Google Scholar 

  3. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Article  Google Scholar 

  4. Zhu, P.; Wang, H. T. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 2021, 4, 943–951.

    Article  CAS  Google Scholar 

  5. Liang, S. Y.; Huang, L.; Gao, Y. S.; Wang, Q.; Liu, B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: The active sites and reaction mechanism. Adv. Sci. 2021, 8, 2102886.

    Article  CAS  Google Scholar 

  6. Li, Y. X.; Zhang, S. L.; Cheng, W. R.; Chen, Y.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO2 electroreduction. Adv. Mater. 2022, 34, 2105204.

    Article  CAS  Google Scholar 

  7. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    Article  CAS  Google Scholar 

  8. Pan, F. P.; Li, B. Y.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X. H.; Xiang, X. M.; Adli, N. M.; Li, T.; Su, D. et al. Boosting CO2 reduction on Fe−N−C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy 2020, 68, 104384.

    Article  CAS  Google Scholar 

  9. Li, H. D.; Pan, Y.; Wang, Z. C.; Yu, Y. D.; Xiong, J.; Du, H. Y.; Lai, J. P.; Wang, L.; Feng S. H. Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density. Nano Res. 2022, 15, 3056–3064.

    Article  CAS  Google Scholar 

  10. Jin, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  11. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  12. Han, S. G.; Ma, D. D.; Zhou, S. H.; Zhang, K. X.; Wei, W. B.; Du, Y. H.; Wu, X. T.; Xu, Q.; Zou, R. Q.; Zhu, Q. L. Fluorine-tuned single-atom catalysts with dense surface Ni−N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl. Catal. B-Environ. 2021, 283, 119591.

    Article  CAS  Google Scholar 

  13. Jia, C.; Li, S. N.; Zhao, Y.; Hocking, R. K.; Ren, W. H.; Chen, X. J.; Su, Z.; Yang, W. F.; Wang, Y.; Zheng, S. S. et al. Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO2 reduction. Adv. Funct. Mater. 2021, 31, 2107072.

    Article  CAS  Google Scholar 

  14. Wang, X. Y.; Wang, Y.; Sang, X. H.; Zheng, W. Z.; Zhang, S. H.; Shuai, L.; Yang, B.; Li, Z. J.; Chen, J. M.; Lei, L. C. et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4192–4198.

    Article  CAS  Google Scholar 

  15. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

    Article  CAS  Google Scholar 

  16. Chen, Y. Q.; Yao, Y. J.; Xia, Y. J.; Mao, K.; Tang, G. A.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Sun, X. H.; Hu, Z. Advanced Ni−N−C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 2020, 13, 2777–2783.

    Article  CAS  Google Scholar 

  17. Hu, C.; Bai, S. L.; Gao, L. J.; Liang, S. C.; Yang, J.; Cheng, S. D.; Mi, S. B.; Qiu, J. S. Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts. ACS Catal. 2019, 9, 11579–11588.

    Article  CAS  Google Scholar 

  18. Li, X. G.; Xi, S. B.; Sun, L. B.; Dou, S.; Huang, Z. F.; Su, T.; Wang, X. Isolated FeN4 sites for efficient electrocatalytic CO2 reduction. Adv. Sci. 2020, 7, 2001545.

    Article  CAS  Google Scholar 

  19. Ni, W. P.; Liu, Z. X.; Zhang, Y.; Ma, C.; Deng, H. Q.; Zhang, S. G.; Wang, S. Y. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe−N4 site. Adv. Mater. 2021, 33, 2003238.

    Article  CAS  Google Scholar 

  20. Zhong, H. X.; Meng, F. L.; Zhang, Q.; Liu K. H.; Zhang X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe−C−N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318–2323.

    Article  CAS  Google Scholar 

  21. Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

    Article  CAS  Google Scholar 

  22. Leonard, N.; Ju, W.; Sinev, I.; Steinberg, J.; Luo, F.; Varela, A. S.; Cuenya, B. R.; Strasser, P. The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe-nitrogen-carbon (Fe−N−C) materials. Chem. Sci. 2018, 9, 5064–5073.

    Article  CAS  Google Scholar 

  23. Li, E. L.; Yang, F.; Wu, Z. M.; Wang, Y.; Ruan, M. B.; Song, P.; Xing, W.; Xu, W. L. A bifunctional highly efficient FeNx/C electrocatalyst. Small 2018, 14, 1702827.

    Article  Google Scholar 

  24. Zhang, C. H.; Yang, S. Z.; Wu, J. J.; Liu, M. J.; Yazdi, S.; Ren, M. Q.; Sha, J. W.; Zhong, J.; Nie, K. Q.; Jalilov, A. S. et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 2018, 8, 1703487.

    Article  Google Scholar 

  25. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

    Article  CAS  Google Scholar 

  26. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

    Article  CAS  Google Scholar 

  27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  28. Cheng, Q. Q.; Mao, K.; Ma, L. S.; Yang, L. J.; Zou, L. L.; Zou, Z. Q.; Hu, Z.; Yang, H. Encapsulation of iron nitride by Fe−N−C shell enabling highly efficient electroreduction of CO2 to CO. ACS Energy Lett. 2018, 3, 1205–1211.

    Article  CAS  Google Scholar 

  29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16, Revision A. 03; Gaussian, Inc.: Wallingford, CT, 2016.

    Google Scholar 

  30. Humphrey, W.; Dalke, A.; Schulten, K. VMD:Visual molecular dynamics. J. Molec. Graphics 1996, 14, 33–38.

    Article  CAS  Google Scholar 

  31. Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Article  Google Scholar 

  32. Dennington, R.; Keith, T.; Millam, J. GaussView, Version 6.09, Semichem Inc.: Shawnee Mission, KS, 2016.

  33. Zhang, Z. Q.; Ge, C. X.; Chen, Y. G.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Construction of cobalt/nitrogen/carbon electrocatalysts with highly exposed active sites for oxygen reduction reaction. Acta Chim. Sin. 2019, 77, 60–65.

    Article  CAS  Google Scholar 

  34. Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J. et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 14871–14876.

    Article  CAS  Google Scholar 

  35. Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Gang, Y.; Xiang, X. M.; Du, Z. C.; Zhang, P.; Wang, G. F.; Nguyen, H. T. et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 2020, 14, 5506–5516.

    Article  CAS  Google Scholar 

  36. Tuo, J. Q.; Lin, Y. X.; Zhu, Y. H.; Jiang, H. L.; Li, Y. H.; Cheng, L.; Pang, R. C.; Shen, J. H.; Song, L.; Li, C. Z. Local structure tuning in Fe−N−C catalysts through support effect for boosting CO2 electroreduction. Appl. Catal. B-Environ. 2020, 272, 118960.

    Article  CAS  Google Scholar 

  37. Pan, F. P.; Li, B. Y.; Xiang, X. M.; Wang, G. F.; Li, Y. Efficient CO2 electroreduction by highly dense and active pyridinic nitrogen on holey carbon layers with fluorine engineering. ACS Catal. 2019, 9, 2124–2133.

    Article  CAS  Google Scholar 

  38. Pan, F. P.; Zhao, H. L.; Deng, W.; Feng, X. H.; Li, Y. A novel N, Fe-Decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction. Electrochim. Acta 2018, 273, 154–161.

    Article  CAS  Google Scholar 

  39. Peng, H. L.; Liu, F. F.; Qiao, X. C.; Xiong, Z. A.; Li, X. H.; Shu, T.; Liao, S. J. Nitrogen and fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE. Electrochim. Acta 2015, 182, 963–970.

    Article  CAS  Google Scholar 

  40. Liu, Y.; Li, Q. Y.; Guo, X.; Kong, X. D.; Ke, J. W.; Chi, M. F.; Li, Q. X.; Geng, Z. G.; Zeng, J. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Adv. Mater. 2020, 32, 1907690.

    Article  CAS  Google Scholar 

  41. Yang, C. M.; An, K. H.; Park, J. S.; Park, K. A.; Lim, S. C.; Cho, S. H.; Lee, Y. S.; Park, W.; Park, C. Y.; Lee, Y. H. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 2006, 73, 075419.

    Article  Google Scholar 

  42. Fu, X. G.; Li, N.; Ren, B. H.; Jiang, G. P.; Liu, Y. R.; Hassan, F. M.; Su, D.; Zhu, J. B.; Yang, L.; Bai, Z. Y. et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv. Energy Mater. 2019, 9, 1803737.

    Article  Google Scholar 

  43. Chen, B. T.; Li, B. R.; Tian, Z. Q.; Liu, W. B.; Liu, W. P.; Sun, W. W.; Wang, K.; Chen, L.; Jiang, J. Z. Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni−N4 sites. Adv. Energy Mater. 2021, 11, 2102152.

    Article  CAS  Google Scholar 

  44. Chen, Z. P.; Mou, K. W.; Wang, X. H.; Liu, L. C. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem., Int. Ed. 2018, 57, 12790–12794.

    Article  CAS  Google Scholar 

  45. Wang, Q.; Zhou, Z. Y.; Lai, Y. J.; You, Y.; Liu, J. G.; Wu, X. L.; Terefe, E.; Chen, C.; Song, L.; Rauf, M. et al. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 2014, 136, 10882–10885.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Key Research and Development Program of China (Nos. 2021YFA1500900, 2017YFA0206500, and 2018YFA0209103), the National Natural Science Foundation of China (Nos. 21832003, 21972061, and 52071174), the Natural Science Foundation of Jiangsu Province, Major Project (No. BK20212005), and Nanjing University Innovation Program for PhD candidate (No. CXYJ21-38).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Yang, Qiang Wu or Zheng Hu.

Electronic Supplementary Material

12274_2022_4441_MOESM1_ESM.pdf

Boosting faradaic efficiency of CO2 electroreduction to CO for Fe−N−C single-site catalysts by stabilizing Fe3+ sites via F-doping

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, G., Zeng, Y. et al. Boosting faradaic efficiency of CO2 electroreduction to CO for Fe−N−C single-site catalysts by stabilizing Fe3+ sites via F-doping. Nano Res. 15, 7896–7902 (2022). https://doi.org/10.1007/s12274-022-4441-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4441-0

Keywords

Navigation