Skip to main content
Log in

The exceedingly strong two-dimensional ferromagnetism in bi-atomic layer SrRuO3 with a critical conduction transition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, few-layer or even monolayer ferromagnetic materials have drawn a great deal of attention due to the promising integration of two-dimensional (2D) magnets into next-generation spintronic devices. The SrRuO3 monolayer is a rare example of stable 2D magnetism under ambient conditions, but only weak ferromagnetism or antiferromagnetism has been found. The bi-atomic layer SrRuO3 as another environmentally inert 2D magnetic system has been paid less attention heretofore. Here we study both the bi-atomic layer and monolayer SrRuO3 in (SrRuO3)n/(SrTiO3)m (n = 1, 2) superlattices in which the SrTiO3 serves as a non-magnetic and insulating space layer. Although the monolayer exhibits arguably weak ferromagnetism, we find that the bi-atomic layer exhibits exceedingly strong ferromagnetism with a Tc of 125 K and a saturation magnetization of 1.2 µB/Ru, demonstrated by both superconducting quantum interference device (SQUID) magnetometry and element-specific X-ray circular dichroism. Moreover, in the bi-atomic layer SrRuO3, we demonstrate that random fluctuations and orbital reconstructions inevitably occurring in the 2D limit are critical to the electrical transport, but are much less critical to the ferromagnetism. Our study demonstrates that the bi-atomic layer SrRuO3 is an exceedingly strong 2D ferromagnetic oxide which has great potentials for applications of ultracompact spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. A. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    Article  CAS  Google Scholar 

  2. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    Article  CAS  Google Scholar 

  3. Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

    Article  CAS  Google Scholar 

  4. Zhang, S. Q.; Xu, R. Z.; Luo, N. N.; Zou, X. L. Two-dimensional magnetic materials: Structures, properties and external controls. Nanoscale 2021, 13, 1398–1424.

    Article  CAS  Google Scholar 

  5. Liu, Z.; Deng, L. J.; Peng, B. Ferromagnetic and ferroelectric two-dimensional materials for memory application. Nano Res. 2021, 14, 1802–1813.

    Article  CAS  Google Scholar 

  6. Klein, L.; Dodge, J. S.; Ahn, C. H.; Snyder, G. J.; Geballe, T. H.; Beasley, M. R.; Kapitulnik, A. Anomalous spin scattering effects in the badly metallic itinerant ferromagnet SrRuO3. Phys. Rev. Lett. 1996, 77, 2774–2777.

    Article  CAS  Google Scholar 

  7. Xia, J.; Siemons, W.; Koster, G.; Beasley, M. R.; Kapitulnik, A. Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3. Phys. Rev. B 2009, 79, 140407(R).

    Article  Google Scholar 

  8. Klein, L.; Dodge, J. S.; Geballe, T. H.; Kapitulnik, A.; Marshall, A. F.; Antognazza, L.; Char, K. Perpendicular magnetic anisotropy and strong magneto-optic properties of SrRuO3 epitaxial films. Appl. Phys. Lett. 1995, 66, 2427–2429.

    Article  CAS  Google Scholar 

  9. Izumi, M.; Nakazawa, K.; Bando, Y. TC suppression of SrRuO3/SrTiO3 superlattices. J. Phys. Soc. Jpn. 1998, 67, 651–654.

    Article  CAS  Google Scholar 

  10. Liu, Z. Q.; Ming, Y.; Lü, W. M.; Huang, Z.; Wang, X.; Zhang, B. M.; Li, C. J.; Gopinadhan, K.; Zeng, S. W.; Annadi, A. et al. Tailoring the electronic properties of SrRuO3 films in SrRuO3/LaAlO3 superlattices. Appl. Phys. Lett. 2012, 101, 223105.

    Article  Google Scholar 

  11. Bern, F.; Ziese, M.; Setzer, A.; Pippel, E.; Hesse, D.; Vrejoiu, I. Structural, magnetic and electrical properties of SrRuO3 films and SrRuO3/SrTiO3 superlattices. J. Phys.: Condens. Matter 2013, 25, 496003.

    CAS  Google Scholar 

  12. Jeong, H.; Jeong, S. G.; Mohamed, A. Y.; Lee, M.; Noh, W. S.; Kim, Y.; Bae, J. S.; Choi, W. S.; Cho, D. Y. Thickness-dependent orbital hybridization in ultrathin SrRuO3 epitaxial films. Appl. Phys. Lett. 2019, 115, 092906.

    Article  Google Scholar 

  13. Verissimo-Alves, M.; García-Fernández, P.; Bilc, D. I.; Ghosez, P.; Junquera, J. Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 superlattices. Phys. Rev. Lett. 2012, 108, 107003.

    Article  Google Scholar 

  14. Huang, A.; Hung, S. H.; Jeng, H. T. Strain induced metal-insulator transition of magnetic SrRuO3 single layer in SrRuO3/SrTiO3 superlattice. Appl. Sci. 2018, 8, 2151.

    Article  CAS  Google Scholar 

  15. Cui, Z. Z.; Grutter, A. J.; Zhou, H.; Cao, H.; Dong, Y. Q.; Gilbert, D. A.; Wang, J. Y.; Liu, Y. S.; Ma, J. J.; Hu, Z. P. et al. Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Sci. Adv. 2020, 6, eaay0114.

    Article  CAS  Google Scholar 

  16. Boschker, H.; Harada, T.; Asaba, T.; Ashoori, R.; Boris, A. V.; Hilgenkamp, H.; Hughes, C. R.; Holtz, M. E.; Li, L.; Muller, D. A. et al. Ferromagnetism and conductivity in atomically thin SrRuO3. Phys. Rev. X 2019, 9, 011027.

    CAS  Google Scholar 

  17. Mahadevan, P.; Aryasetiawan, F.; Janotti, A.; Sasaki, T. Evolution of the electronic structure of a ferromagnetic metal: Case of SrRuO3. Phys. Rev. B 2009, 80, 035106.

    Article  Google Scholar 

  18. Si, L.; Zhong, Z. C.; Tomczak, J. M.; Held, K. Route to room-temperature ferromagnetic ultrathin SrRuO3 films. Phys. Rev. B 2015, 92, 041108(R).

    Article  Google Scholar 

  19. Jeong, S. G.; Min, T.; Woo, S.; Kim, J.; Zhang, Y. Q.; Cho, S. W.; Son, J.; Kim, Y. M.; Han, J. H.; Park, S. et al. Phase instability amid dimensional crossover in artificial oxide crystal. Phys. Rev. Lett. 2020, 124, 026401.

    Article  CAS  Google Scholar 

  20. Xie, X. C.; Das Sarma, S. Transition from one- to two-dimensional fluctuating variable-range-hopping conduction in microstructures. Phys. Rev. B 1987, 36, 4566–4569.

    Article  CAS  Google Scholar 

  21. Tsigankov, D. N.; Efros, A. L. Variable range hopping in two-dimensional systems of interacting electrons. Phys. Rev. Lett. 2002, 88, 176602.

    Article  CAS  Google Scholar 

  22. Lee, P. A.; Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287–337.

    Article  CAS  Google Scholar 

  23. Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 2001, 73, 797–855.

    Article  CAS  Google Scholar 

  24. Miranda, E. Dobrosavljević, V. Disorder-driven non-Fermi liquid behaviour of correlated electrons. Rep. Prog. Phys. 2005, 68, 2337–2408.

    Article  CAS  Google Scholar 

  25. Altshuler, B. L.; Aronov, A. G. Fermi-liquid theory of the electron-electron interaction effects in disordered metals. Solid State Commun. 1983, 46, 429–435.

    Article  Google Scholar 

  26. Dwivedi, G. D.; Sun, S. J.; Kuo, Y. K.; Chou, H. Role of electron-magnon interaction in non-Fermi liquid behavior of SrRuO3. J. Phys.:Condens. Matter 2019, 31, 125602.

    CAS  Google Scholar 

  27. Allen, P. B.; Berger, H.; Chauvet, O.; Forro, L.; Jarlborg, T.; Junod, A.; Revaz, B.; Santi, G. Transport properties, thermodynamic properties, and electronic structure of SrRuO3. Phys. Rev. B 1996, 53, 4393–4398.

    Article  CAS  Google Scholar 

  28. Meng, M.; Wang, Z.; Fathima, A.; Ghosh, S.; Saghayezhian, M.; Taylor, J.; Jin, R. Y.; Zhu, Y. M.; Pantelides, S. T.; Zhang, J. D. et al. Interface-induced magnetic polar metal phase in complex oxides. Nat. Commun. 2019, 10, 5248.

    Article  Google Scholar 

  29. Jeong, S. G.; Han, G.; Song, S.; Min, T.; Mohamed, A. Y.; Park, S.; Lee, J.; Jeong, H. Y.; Kim, Y. M.; Cho, D. Y. et al. Propagation control of octahedral tilt in SrRuO3 via artificial heterostructuring. Adv. Sci. 2020, 7, 2001643.

    Article  CAS  Google Scholar 

  30. Lee, H. G.; Wang, L. F.; Si, L.; He, X. Y.; Porter, D. G.; Kim, J. R.; Ko, E. K.; Kim, J.; Park, S. M.; Kim, B. et al. Atomic-scale metal-insulator transition in SrRuO3 ultrathin films triggered by surface termination conversion. Adv. Mater. 2020, 32, 1905815.

    Article  CAS  Google Scholar 

  31. Agrestini, S.; Hu, Z.; Kuo, C. Y.; Haverkort, M. W.; Ko, K. T.; Hollmann, N.; Liu, Q.; Pellegrin, E.; Valvidares, M.; Herrero-Martin, J. et al. Electronic and spin states of SrRuO3 thin films: An X-ray magnetic circular dichroism study. Phys. Rev. B 2015, 91, 075127.

    Article  Google Scholar 

  32. Chang, Y. J.; Kim, C. H.; Phark, S. H.; Kim, Y. S.; Yu, J.; Noh, T. W. Fundamental thickness limit of itinerant ferromagnetic SrRuO3 thin films. Phys. Rev. Lett. 2009, 103, 057201.

    Article  Google Scholar 

  33. Kang, S.; Tseng, Y.; Kim, B. H.; Yun, S.; Sohn, B.; Kim, B.; McNally, D.; Paris, E.; Kim, C. H.; Kim, C. et al. Orbital-selective confinement effect of Ru 4d orbitals in SrRuO3 ultrathin film. Phys. Rev. B 2019, 99, 045113.

    Article  CAS  Google Scholar 

  34. Toyota, D.; Ohkubo, I.; Kumigashira, H.; Oshima, M.; Ohnishi, T.; Lippmaa, M.; Kawasaki, M.; Koinuma, H. Ferromagnetism stabilization of ultrathin SrRuO3 films: Thickness-dependent physical properties. J. Appl. Phys. 2006, 99, 08N505.

    Article  Google Scholar 

  35. Kourkoutis, L. F.; Song, J. H.; Hwang, H. Y.; Muller, D. A. Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers. Proc. Natl. Acad. Sci. USA 2010, 107, 11682–11685.

    Article  CAS  Google Scholar 

  36. Liao, Z. L.; Li, F. M.; Gao, P.; Li, L.; Guo, J. D.; Pan, X. Q.; Jin, R.; Plummer, E. W.; Zhang, J. D. Origin of the metal-insulator transition in ultrathin films of La2/3Sr1/3MnO3. Phys. Rev. B 2015, 92, 125123.

    Article  Google Scholar 

  37. Wu, P. C.; Song, H. L.; Yuan, Y.; Feng, B.; Ikuhara, Y.; Huang, R.; Yu, P.; Duan, C. G.; Chu, Y. H. Thickness dependence of transport behaviors in SrRuO3/SrTiO3 superlattices. Phys. Rev. Mater. 2020, 4, 014401.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 52072244 and 12104305), the Science and Technology Commission of Shanghai Municipality (No. 21JC1405000), and the ShanghaiTech Startup Fund. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract (No. DE-AC02-06CH11357) and the Advanced Light Source, a U.S. DOE Office of Science User Facility under Contract (No. DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Cheng or Xiaofang Zhai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Cheng, L., Cao, H. et al. The exceedingly strong two-dimensional ferromagnetism in bi-atomic layer SrRuO3 with a critical conduction transition. Nano Res. 15, 7584–7589 (2022). https://doi.org/10.1007/s12274-022-4392-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4392-5

Keywords

Navigation