Skip to main content
Log in

Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Visualization is a direct, efficient, and simple interface method to realize the interaction between human and machine, whereas the flexible display unit, as the major bottleneck, still deeply hinders the advances of wearable and virtual reality devices. To obtain flexible optoelectronic devices, one of the effective methods is to transfer a high-efficient and long-lifetime inorganic optoelectronic film from its rigid epitaxial substrate to a foreign flexible/soft substrate. Additionally, piezo-phototronic effect is a fundamental theory for guiding the design of flexible optoelectronic devices. Herein, we demonstrate a flexible, stretchable, and transparent InGaN/GaN multiple quantum wells (MQWs)/polyacrylamide (PAAM) hydrogel-based light emitting diode coupling with the piezo-phototronic effect. The quantum well energy band and integrated luminous intensity (increased by more than 31.3%) are significantly modulated by external mechanical stimuli in the device. Benefiting from the small Young’s modulus of hydrogel and weak Van der Waals force, the composite film can endure an extreme tensile condition of about 21.1% stretching with negligible tensile strains transmitted to the InGaN/GaN MQWs. And the stable photoluminescence characteristics can be observed. Moreover, the hydrogen-bond adsorption and excellent transparency of the hydrogel substrate greatly facilitate the packaging and luminescence of the optoelectronic device. And thus, such a novel integration scheme of inorganic semiconductor materials and organic hydrogel materials would help to guide the robust stretchable optoelectronic devices, and show great potential in emerging wearable devices and virtual reality applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J.; Shim, H. J.; Yang, J.; Choi, M. K.; Kim, D. C.; Kim, J.; Hyeon, T.; Kim, D. H. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 2017, 29, 1700217.

    Article  Google Scholar 

  2. Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473–480.

    Article  Google Scholar 

  3. Kim, D. H.; Rogers, J. A. Stretchable electronics: Materials strategies and devices. Adv. Mater. 2008, 20, 4887–4892.

    Article  CAS  Google Scholar 

  4. Dai, X.; Messanvi, A.; Zhang, H. Z.; Durand, C.; Eymery, J.; Bougerol, C.; Julien, F. H.; Tchernycheva, M. Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett. 2015, 15, 6958–6964.

    Article  Google Scholar 

  5. Chen, S. W. H.; Huang, Y. M.; Chang, Y. H.; Lin, Y.; Liou, F. J.; Hsu, Y. C.; Song, J.; Choi, J.; Chow, C. W.; Lin, C. C. et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photonics 2020, 7, 2228–2235.

    Article  CAS  Google Scholar 

  6. Cheung, Y. F.; Li, K. H.; Choi, H. W. Flexible free-standing IIInitride thin films for emitters and displays. ACS Appl. Mater. Interfaces 2016, 8, 21440–21445.

    Article  CAS  Google Scholar 

  7. Lee, M.; Yang, M. N.; Song, K. M.; Park, S. InGaN/GaN blue light emitting diodes using freestanding GaN extracted from a Si substrate. ACS Photonics 2018, 5, 1453–1459.

    Article  CAS  Google Scholar 

  8. Zhang, S.; Ma, B.; Zhou, X. Y.; Hua, Q. L.; Gong, J.; Liu, T.; Cui, X.; Zhu, J. Y.; Guo, W. B.; Jing, L. et al. Strain-controlled power devices as inspired by human reflex. Nat. Commun. 2020, 11, 326.

    Article  CAS  Google Scholar 

  9. Hua, Q. L.; Cui, X.; Liu, H. T.; Pan, C. F.; Hu, W. G.; Wang, Z. L. Piezotronic synapse based on a single GaN microwire for artificial sensory systems. Nano Lett. 2020, 20, 3761–3768.

    Article  CAS  Google Scholar 

  10. Chung, K.; Yoo, H.; Hyun, J. K.; Oh, H.; Tchoe, Y.; Lee, K.; Baek, H.; Kim, M.; Yi, G. C. Flexible GaN light-emitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots. Adv. Mater. 2016, 28, 7688–7694.

    Article  CAS  Google Scholar 

  11. Chen, J.; Oh, S. K.; Nabulsi, N.; Johnson, H.; Wang, W. J.; Ryou, J. H. Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator. Nano Energy 2019, 57, 670–679.

    Article  CAS  Google Scholar 

  12. Asad, M.; Li, Q.; Sachdev, M.; Wong, W. S. Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates. Nano Energy 2020, 53, 104724.

    Article  Google Scholar 

  13. Park, J. B.; Choi, W. S.; Chung, T. H.; Lee, S. H.; Kwak, M. K.; Ha, J. S.; Jeong, T. Transfer printing of vertical-type microscale light-emitting diode array onto flexible substrate using biomimetic stamp. Opt. Express 2011, 25, 6832–6841.

    Google Scholar 

  14. Choi, J. H.; Cho, E. H.; Lee, Y. S.; Shim, M. B.; Ahn, H. Y.; Baik, C. W.; Lee, E. H.; Kim, K.; Kim, T. H.; Kim, S. et al. Fully flexible GaN light-emitting diodes through nanovoid-mediated transfer. Adv. Opt. Mater. 2014, 2, 267–274.

    Article  Google Scholar 

  15. Zhu, J. Y.; Zhou, X. Y.; Jing, L.; Hua, Q. L.; Hu, W. G.; Wang, Z. L. Piezotronic effect modulated flexible AlGaN/GaN high-electron-mobility transistors. ACS Nano 2011, 13, 13161–13168.

    Article  Google Scholar 

  16. Tchoe, Y.; Chung, K.; Lee, K.; Jo, J.; Chung, K.; Hyun, J. K.; Kim, M.; Yi, G. C. Free-standing and ultrathin inorganic light-emitting diode array. NPG Asia Mater. 2011, 11, 37.

    Article  Google Scholar 

  17. Lee, S. Y.; Park, K. I.; Huh, C.; Koo, M.; Yoo, H. G.; Kim, S.; Ah, C. S.; Sung, G. Y.; Lee, K. J. Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications. Nano Energy 2012, 1, 145–151.

    Article  CAS  Google Scholar 

  18. Chun, J.; Hwang, Y.; Choi, Y. S.; Kim, J. J.; Jeong, T.; Baek, J. H.; Ko, H. C.; Park, S. J. Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer. Scr. Mater. 2014, 77, 13–16.

    Article  CAS  Google Scholar 

  19. Liu, Q. H.; Nian, G. D.; Yang, C. H.; Qu, S. X.; Suo, Z. G. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 2018, 9, 846.

    Article  Google Scholar 

  20. Gan, D. L.; Xing, W. S.; Jiang, L. L.; Fang, J.; Zhao, C. C.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Lu, X. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 2011, 10, 1487.

    Article  Google Scholar 

  21. Yuk, H.; Zhang, T.; Lin, S. T.; Parada, G. A.; Zhao, X. H. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196.

    Article  CAS  Google Scholar 

  22. Xia, S.; Song, S. X.; Jia, F.; Gao, G. H. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B 2019, 7, 4638–4648.

    Article  CAS  Google Scholar 

  23. Yuk, H.; Zhang, T.; Parada, G. A.; Liu, X. Y.; Zhao, X. H. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 5, 12028.

    Article  Google Scholar 

  24. Wirthl, D.; Pichler, R.; Drack, M.; Kettlguber, G.; Moser, R.; Gerstmayr, R.; Hartmann, F.; Bradt, E.; Kaltseis, R.; Siket, C. M. et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 2017, 3, e1700053.

    Article  Google Scholar 

  25. Liu, Y.; Zhang, Y.; Yang, Q.; Niu, S. M.; Wang, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 2015, 14, 257–275.

    Article  CAS  Google Scholar 

  26. Hu, Y. F.; Zhang, Y.; Lin, L.; Ding, Y.; Zhu, G.; Wang, Z. L. Piezophototronic effect on electroluminescence properties of p-type GaN thin films. Nano Lett. 2012, 12, 3851–3856.

    Article  CAS  Google Scholar 

  27. Jiang, C. Y.; Chen, Y.; Sun, J. M.; Jing, L.; Liu, M. M.; Liu, T.; Pan, Y.; Pu, X.; Ma, B.; Hu, W. G. et al. Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezophototronic effect. Nano Energy 2019, 57, 300–306.

    Article  CAS  Google Scholar 

  28. Jiang, C. Y.; Jing, L.; Huang, X.; Liu, M. M.; Du, C. H.; Liu, T.; Pu, X.; Hu, W. G.; Wang, Z. L. Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezophototronic effect. ACS Nano 2017, 11, 9405–9412.

    Article  CAS  Google Scholar 

  29. Huang, X.; Du, C. H.; Zhou, Y. L.; Jiang, C. Y.; Pu, X.; Liu, W.; Hu, W. G.; Chen, H.; Wang, Z. L. Piezo-phototronic effect in a quantum well structure. ACS Nano 2016, 10, 5145–5152.

    Article  CAS  Google Scholar 

  30. Huang, X.; Jiang, C. Y.; Du, C. H.; Jing, L.; Liu, M. M.; Hu, W. G.; Wang, Z. L. Enhanced luminescence performance of quantum wells by coupling piezo-phototronic with plasmonic effects. ACS Nano 2016, 10, 11420–11427.

    Article  CAS  Google Scholar 

  31. Liu, T.; Liu, M. M.; Dou, S.; Sun, J. M.; Cong, Z. F.; Jiang, C. Y.; Du, C. H.; Pu, X.; Hu, W. G.; Wang, Z. L. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 2018, 12, 2818–2826.

    Article  CAS  Google Scholar 

  32. Gupta, M. K.; Bansil, R. Laser Raman spectroscopy of polyacrylamide. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 353–360.

    Article  CAS  Google Scholar 

  33. Liu, N.; Sugawara, K.; Yoshitaka, N.; Yamada, H.; Takeuchi, D.; Akabane, Y.; Fujino, K.; Kawai, K.; Arima, K.; Yamamura, K. Damage-free highly efficient plasma-assisted polishing of a 20-mm square large mosaic single crystal diamond substrate. Sci. Rep. 2020, 10, 19432.

    Article  CAS  Google Scholar 

  34. Liu, H. F.; Seng, H. L.; Teng, J. H.; Chua, S. J.; Chi, D. Z. Effects of lift-off and strain relaxation on optical properties of InGaN/GaN blue LED grown on 150 mm diameter Si(111) substrate. J. Cryst. Growth 2014, 402, 155–160.

    Article  CAS  Google Scholar 

  35. Chen, Z. Y.; Zheng, X. T.; Li, Z. L.; Wang, P.; Rong, X.; Wang, T.; Yang, X. L.; Xu, F. J.; Qin, Z. X.; Ge, W. K. et al. Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs. Appl. Phys. Lett. 2016, 109, 062104.

    Article  Google Scholar 

  36. Zhao, D. G.; Xu, S. J.; Xie, M. H.; Tong, S. Y.; Yang, H. Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl. Phys. Lett. 2003, 83, 677–679.

    Article  CAS  Google Scholar 

  37. Wang, L. S.; Zang, K. Y.; Tripathy, S.; Chua, S. J. Effects of periodic delta-doping on the properties of GaN: Si films grown on Si(111) substrates. Appl. Phys. Lett. 2004, 85, 5881–5883.

    Article  CAS  Google Scholar 

  38. Liu, T.; Li, D.; Hu, H.; Huang, X.; Zhao, Z. F.; Sha, W.; Jiang, C. Y.; Du, C. H.; Liu, M. M.; Pu, X. et al. Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays. Nano Energy 2020, 67, 104218.

    Article  CAS  Google Scholar 

  39. Paranjape, B. V.; Arimitsu, N.; Krebes, E. S. Reflection and transmission of ultrasound from a planar interface. J. Appl. Phys. 1987, 61, 888–890.

    Article  Google Scholar 

  40. Zhang, C. Z.; Koughia, C.; Güneş, O.; Luo, J.; Hossain, N.; Li, Y. S.; Cui, X. Y.; Wen, S. J.; Wong, R.; Yang, Q. Q. et al. Synthesis, structure and optical properties of high-quality VO2 thin films grown on silicon, quartz and sapphire substrates by high temperature magnetron sputtering: Properties through the transition temperature. J. Alloys Compd. 2020, 848, 156323.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the support from the National Natural Science Foundation of China (Nos. 61904012, 52192610, and 52173298), and the National Key Research and Development Program of China (No. 2021YFA1201603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qilin Hua, Lingyu Wan or Weiguo Hu.

Electronic Supplementary Material

12274_2022_4170_MOESM1_ESM.pdf

Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, J., Ji, K. et al. Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes. Nano Res. 15, 5492–5499 (2022). https://doi.org/10.1007/s12274-022-4170-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4170-4

Keywords

Navigation