Skip to main content
Log in

Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry, artificial intelligence and wearable electronics. In this work, silver nanowires (AgNWs) are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent, and boron nitride (BN) is performed to prepare BN nanosheets (BNNS) with the help of isopropyl alcohol and ultrasonication-assisted peeling method, which are compounded with aramid nanofibers (ANF) prepared by chemical dissociation, respectively, and the (BNNS/ANF)-(AgNWs/ANF) thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the “vacuum-assisted filtration and hot-pressing” method. Janus (BNNS/ANF)-(AgNWs/ANF) composite films exhibit “one side insulating, one side conducting” performance, the surface resistivity of the BNNS/ANF surface is 4.7 × 1013 Ω, while the conductivity of the AgNWs/ANF surface is 5,275 S/cm. And Janus (BNNS/ANF)-(AgNWs/ANF) composite film with thickness of 95 µm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K) and superior electromagnetic interference shielding effectiveness of 70 dB. The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa. It also has good temperature-voltage response characteristics (high Joule heating temperature at low supply voltage (5 V, 215.0 °C), fast response time (10 s)), excellent electrical stability and reliability (stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, F. Q.; Yu, P. X.; Mao, L.; Wang, J. H. Simple large-scale method of recycled graphene films vertical arrangement for superhigh through-plane thermal conductivity of epoxy composites. Compos. Sci. Technol. 2021, 215, 109026.

    Article  CAS  Google Scholar 

  2. Lin, Y.; Kang, Q.; Wei, H.; Bao, H.; Jiang, P. K.; Mai, Y. W.; Huang, X. Y. Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 2021, 13, 180.

    Article  CAS  Google Scholar 

  3. Zhang, F.; Feng, Y. Y.; Qin, M. M.; Gao, L.; Li, Z. Y.; Zhao, F. L.; Zhang, Z. X.; Lv, F.; Feng, W. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 2019, 29, 1901383.

    Article  Google Scholar 

  4. Kang, S. J.; Hong, H.; Jeong, C.; Lee, J. S.; Ryu, H.; Yang, J. H.; Kim, J. U.; Shin, Y. J.; Kim, T. I. Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Res. 2021, 14, 3253–3259.

    Article  CAS  Google Scholar 

  5. Yu, H. T.; Feng, Y. Y.; Chen, C.; Zhang, Z. X.; Cai, Y.; Qin, M. M.; Feng, W. Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 2021, 179, 348–357.

    Article  CAS  Google Scholar 

  6. Jin, L. Y.; Wang, P.; Cao, W. J.; Song, N.; Ding, P. Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl. Mater. Interfaces 2022, 14, 1747–1756.

    Article  CAS  Google Scholar 

  7. Yu, H. T.; Feng, Y. Y.; Gao, L.; Chen, C.; Zhang, Z. X.; Feng, W. Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 2020, 53, 7161–7170.

    Article  CAS  Google Scholar 

  8. Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021, 4, 274–285.

    Article  CAS  Google Scholar 

  9. Yang, X. T.; Guo, Y. Q.; Luo, X.; Zheng, N.; Ma, T. B.; Tan, J. J.; Li, C. M.; Zhang, Q. Y.; Gu, J. W. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 2018, 164, 59–64.

    Article  CAS  Google Scholar 

  10. He, X. Q.; Zhang, L.; Li, C. Z. PEG-based polyurethane/paraffin@SiO2/boron nitride phase change composite with efficient thermal conductive pathways and superior mechanical property. Compos. Commun. 2021, 25, 100609.

    Article  Google Scholar 

  11. Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

    Article  CAS  Google Scholar 

  12. Song, C. K.; Meng, X. Y.; Chen, H.; Liu, Z. G.; Zhan, Q.; Sun, Y. M.; Lu, W. B.; Dai, Y. Q. Flexible, graphene-based films with three-dimensional conductive network via simple drop-casting toward electromagnetic interference shielding. Compos. Commun. 2021, 24, 100632.

    Article  Google Scholar 

  13. Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

    Article  CAS  Google Scholar 

  14. Yin, R.; Yang, S. Y.; Li, Q. M.; Zhang, S. D.; Liu, H.; Han, J.; Liu, C. T.; Shen, C. Y. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 2020, 65, 899–908.

    Article  CAS  Google Scholar 

  15. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  CAS  Google Scholar 

  16. Han, L. Y.; Song, Q.; Li, K. Z.; Yin, X. M.; Sun, J. J.; Li, H. J.; Zhang, F. P.; Ren, X. R.; Wang, X. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding. J. Mater. Sci. Technol. 2021, 72, 154–161.

    Article  CAS  Google Scholar 

  17. Li, Z.; Zhang, L.; Qi, R.; Xie, F.; Qi, S. H. Improvement of the thermal transport performance of a poly(vinylidene fluoride) composite film including silver nanowire. J. Appl. Polym. Sci. 2016, 133, 43554.

    Article  Google Scholar 

  18. Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

    Article  CAS  Google Scholar 

  19. Liang, C. B.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl. Mater. Interfaces 2020, 12, 18023–18031.

    Article  CAS  Google Scholar 

  20. Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2021, 14, 2424–2431.

    Article  CAS  Google Scholar 

  21. Zhou, S. S.; Xu, T. L.; Jin, L. Y.; Song, N.; Ding, P. Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: Design of assembled well-oriented boron nitride nanosheets. Compos. Sci. Technol. 2022, 219, 109259.

    Article  CAS  Google Scholar 

  22. Guo, F. M.; Shen, X.; Zhou, J. M.; Liu, D.; Zheng, Q. B.; Yang, J. L.; Jia, B. H.; Lau, A. K. T.; Kim, J. K. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 2020, 30, 1910826.

    Article  CAS  Google Scholar 

  23. Kutty, R. G.; Sreejith, S.; Kong, X. H.; He, H. Y.; Wang, H.; Lin, J. H.; Suenaga, K.; Lim, C. T.; Zhao, Y. L.; Ji, W. et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO2 uptake. Nano Res. 2018, 11, 6325–6335.

    Article  CAS  Google Scholar 

  24. Liu, Z.; Li, J. H.; Liu, X. H. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 6503–6515.

    Article  CAS  Google Scholar 

  25. Wang, W.; Zhao, M.; Jiang, D. Y.; Zhou, X.; He, J. Q. Amino functionalized boron nitride and enhanced thermal conductivity of epoxy composites via combining mixed sizes of fillers. Ceram. Int. 2022, 48, 2763–2770.

    Article  CAS  Google Scholar 

  26. Wang, X.; Yu, Z. H.; Bian, H. Y.; Wu, W. B.; Xiao, H. N.; Dai, H. Q. Thermally conductive and electrical insulation BNNS/CNF aerogel nano-paper. Polymers 2019, 11, 660.

    Article  Google Scholar 

  27. Mo, R.; Liu, Z. J.; Guo, W. Y.; Wu, X. F.; Xu, Q. J.; Min, Y. L.; Fan, J. C.; Yu, J. H. Interfacial crosslinking for highly thermally conductive and mechanically strong boron nitride/aramid nanofiber composite film. Compos. Commun. 2021, 28, 100962.

    Article  Google Scholar 

  28. Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Gu, J. W. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 2020, 12, 1677–1686.

    Article  CAS  Google Scholar 

  29. Chen, Y. P.; Hou, X.; Liao, M. Z.; Dai, W.; Wang, Z. W.; Yan, C.; Li, H.; Lin, C. T.; Jiang, N.; Yu, J. H. Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. Chem. Eng. J. 2020, 381, 122690.

    Article  CAS  Google Scholar 

  30. Wang, Z. G.; Liu, W.; Liu, Y. H.; Ren, Y.; Li, Y. P.; Zhou, L.; Xu, J. Z.; Lei, J.; Li, Z. M. Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Compos. Part B: Eng. 2020, 180, 107569.

    Article  CAS  Google Scholar 

  31. Tan, D. Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 2020, 30, 1808567.

    Article  CAS  Google Scholar 

  32. Liu, P. F.; Li, X. F.; Min, P.; Chang, X. Y.; Shu, C.; Ding, Y.; Yu, Z. Z. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2021, 13, 22.

    Article  Google Scholar 

  33. Chen, H.; Lu, Q. X.; Cao, X.; Wang, N.; Wang, Z. L. Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion. Nano Res. 2022, 15, 2505–2511.

    Article  CAS  Google Scholar 

  34. Li, M. J.; Zhu, Y. F.; Teng, C. Q. Facial fabrication of aramid composite insulating paper with high strength and good thermal conductivity. Compos. Commun. 2020, 21, 100370.

    Article  Google Scholar 

  35. Wu, K.; Wang, J. M.; Liu, D. Y.; Lei, C. X.; Liu, D.; Lei, W. W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

    Article  CAS  Google Scholar 

  36. Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

    Article  CAS  Google Scholar 

  37. Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.

    Article  CAS  Google Scholar 

  38. Vu, M. C.; Mani, D.; Jeong, T. H.; Kim, J. B.; Lim, C. S.; Kang, H.; Islam, A.; Lee, O. C.; Park, P. J.; Kim, S. R. Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications. Chem. Eng. J. 2022, 429, 132182.

    Article  CAS  Google Scholar 

  39. Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

    Article  CAS  Google Scholar 

  40. Lin, M. Y.; Li, Y. H.; Xu, K.; Ou, Y. H.; Su, L. F.; Feng, X.; Li, J.; Qi, H. S.; Liu, D. T. Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets. Compos. Sci. Technol. 2019, 175, 85–91.

    Article  CAS  Google Scholar 

  41. Nasser, J.; Lin, J. J.; Steinke, K.; Sodano, H. A. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings. Compos. Sci. Technol. 2019, 174, 125–133.

    Article  CAS  Google Scholar 

  42. Zhao, Y.; Li, X.; Shen, J. N.; Gao, C. J. Van Der Bruggen, B. The potential of kevlar aramid nanofiber composite membranes. J. Mater. Chem. A 2020, 8, 7548–7568.

    Article  CAS  Google Scholar 

  43. Lei, M.; Qu, X.; Liu, H.; Liu, Y.; Wang, S. J.; Wu, S.; Bentley, W. E.; Payne, G. F.; Liu, C. S. Programmable electrofabrication of porous Janus films with tunable Janus balance for anisotropic cell guidance and tissue regeneration. Adv. Funct. Mater. 2019, 29, 1900065.

    Article  Google Scholar 

  44. Yang, H. C.; Xie, Y. S.; Hou, J. W.; Cheetham, A. K.; Chen, V.; Darling, S. B. Janus membranes: Creating asymmetry for energy efficiency. Adv. Mater. 2018, 30, 1801495.

    Article  Google Scholar 

  45. Wang, P. L.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Programmable micropatterned surface for single-layer homogeneous-polymer Janus actuator. Chem. Eng. J. 2022, 430, 133052.

    Article  CAS  Google Scholar 

  46. Yan, L. L.; Yang, X. B.; Long, J.; Cheng, X.; Pan, D.; Huang, Y. F.; Shao, L. Universal unilateral electro-spinning/spraying strategy to construct water-unidirectional Janus membranes with well-tuned hierarchical micro/nanostructures. Chem. Commun. 2020, 56, 478–481.

    Article  CAS  Google Scholar 

  47. Li, C.; Sun, Z. T.; Yang, T.; Yu, L. H.; Wei, N.; Tian, Z. N.; Cai, J. S.; Lv, J. Z.; Shao, Y. L.; Rümmeli, M. H. et al. Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 2020, 32, 2003425.

    Article  CAS  Google Scholar 

  48. Ling, Z.; Wang, F. Q.; Shi, C. R.; Wang, Z. Y.; Fan, X. H.; Wang, L.; Zhao, J. F.; Jiang, L. L.; Li, Y. H.; Chen, C. et al. Fast peel-off ultrathin, transparent, and free-standing films assembled from low-dimensional materials using MXene sacrificial layers and produced bubbles. Small Met., in press, DOI: https://doi.org/10.1002/smtd.202101388.

  49. Ma, C.; Cao, W. T.; Zhang, W.; Ma, M. G.; Sun, W. M.; Zhang, J.; Chen, F. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 2021, 403, 126438.

    Article  CAS  Google Scholar 

  50. Jia, Y. P.; Sun, R. Z.; Pan, Y. M.; Wang, X.; Zhai, Z. Y.; Min, Z. Y.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible and thin multifunctional waterborne polyurethane/Ag film for high-efficiency electromagnetic interference shielding, electro-thermal and strain sensing performances. Compos. Part B: Eng. 2021, 210, 108668.

    Article  CAS  Google Scholar 

  51. Zhang, X. R.; Liu, C. H.; Zhang, L. L.; Jia, L. N.; Shi, M. Q.; Chen, L.; Di, Y. S.; Gan, Z. X. Bioinspired tunable structural color film with Janus wettability and interfacial floatability towards visible water quality monitoring. Adv. Funct. Mater. 2021, 31, 2010406.

    Article  CAS  Google Scholar 

  52. Zhong, L. S.; Feng, J.; Guo, Z. G. An alternating nanoscale (hydrophilic-hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. J. Mater. Chem. A 2019, 7, 8405–8413.

    Article  CAS  Google Scholar 

  53. Yang, G.; Pan, J. H.; Fu, X. C.; Hu, Z. Y.; Wang, Y.; Wu, Z. M.; Mu, E. Z.; Yan, X. J.; Lu, M. H. A comparative experimental study on the cross-plane thermal conductivities of nano-constructed Sb2Te3/(Cu, Ag, Au, Pt) thermoelectric multilayer thin films. Nano Converg. 2018, 5, 22.

    Article  Google Scholar 

  54. Chae, W. H.; Sannicolo, T.; Grossman, J. C. Double-sided graphene oxide encapsulated silver nanowire transparent electrode with improved chemical and electrical stability. ACS Appl. Mater. Interfaces 2020, 12, 17909–17920.

    Article  CAS  Google Scholar 

  55. Guerra, V.; Wan, C. Y.; Degirmenci, V.; Sloan, J.; Presvytis, D.; McNally, T. 2D boron nitride nanosheets (BNNS) prepared by high-pressure homogenisation: Structure and morphology. Nanoscale 2018, 10, 19469–19477.

    Article  CAS  Google Scholar 

  56. Wang, Z. X.; Jiao, B.; Qing, Y. C.; Nan, H. Y.; Huang, L. Q.; Wei, W.; Peng, Y.; Yuan, F.; Dong, H.; Hou, X. et al. Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 2826–2834.

    Article  CAS  Google Scholar 

  57. Han, Y. X.; Shi, X. T.; Yang, X. T.; Guo, Y. Q.; Zhang, J. L.; Kong, J.; Gu, J. W. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol. 2020, 187, 107944.

    Article  CAS  Google Scholar 

  58. Wang, Z. G.; Gong, F.; Yu, W. C.; Huang, Y. F.; Zhu, L.; Lei, J.; Xu, J. Z.; Li, Z. M. Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites. Compos. Sci. Technol. 2018, 162, 7–13.

    Article  CAS  Google Scholar 

  59. Ruan, K. P.; Guo, Y. Q.; Lu, C. Y.; Shi, X. T.; Ma, T. B.; Zhang, Y. L.; Kong, J.; Gu, J. W. Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 2021, 8438614.

    Article  CAS  Google Scholar 

  60. Kim, H. B.; Lee, W. J.; Choi, S. C.; Lee, K. B.; Lee, M. H. Dependence of the fiber diameter on quality factor of filters fabricated with meta-aramid nanofibers. Sep. Purif. Technol. 2019, 222, 332–341.

    Article  CAS  Google Scholar 

  61. Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A: Appl. Sci. Manuf. 2020, 128, 105670.

    Article  CAS  Google Scholar 

  62. Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive polylactic acid composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci., in press, DOI: https://doi.org/10.1007/s10118-022-2673-9.

  63. Kunwar, A.; Coutinho, Y. A.; Hektor, J.; Ma, H. T.; Moelans, N. Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface. J. Mater. Sci. Technol. 2020, 59, 203–219.

    Article  CAS  Google Scholar 

  64. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  65. Rahaman, M.; Al Ghufais, I. A.; Periyasami, G.; Aldalbahi, A. Recycling and reusing polyethylene waste as antistatic and electromagnetic interference shielding materials. Int. J. Polym. Sci. 2020, 2020, 6421470.

    Article  Google Scholar 

  66. Du, W. H.; Zhang, J. T.; Zhao, Z. X.; Zhang, X. Preparation of novel temperature-responsive double-network hydrogel reinforced with aramid nanofibers. Compos. Commun. 2020, 22, 100438.

    Article  Google Scholar 

  67. Hou, S. Y.; Ma, W. L.; Li, G. H.; Zhang, Y.; Ji, Y. Y.; Fan, F.; Huang, Y. Excellent terahertz shielding performance of ultrathin flexible Cu/graphene nanolayered composites with high stability. J. Mater. Sci. Technol. 2020, 52, 136–144.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support and funding from the Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120093); Foundation of National Natural Science Foundation of China (Nos. U21A2093 and 51973173); Technological Base Scientific Research Projects (Highly Thermal conductivity Nonmetal Materials). K. P. R. would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University. This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Gu.

Electronic Supplementary Material

12274_2022_4159_MOESM1_ESM.pdf

Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Ruan, K. & Gu, J. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 15, 4747–4755 (2022). https://doi.org/10.1007/s12274-022-4159-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4159-z

Keywords

Navigation