Skip to main content
Log in

Glucose-responsive erythrocyte-bound nanoparticles for continuously modulated insulin release

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Glucose-responsive closed-loop insulin delivery systems represent a promising treatment strategy for diabetes, but current systems generally cannot achieve long-term effects. In this study, we designed an erythrocyte-biomimetic glucose-responsive system (EGRS) by coupling glucose-responsive nanoparticles (GRNs) to red blood cells; these nanoparticles exhibited the dual functions of glucose-responsiveness and persistent presence in circulation. GRNs are generated by encapsulating with insulin through ion crosslinking, followed by coloading with glucose oxidase (GOx) and catalase (CAT), a process that endows the nanoparticles with glucose-responsiveness. Simultaneously, the GRNs are coupled with red blood cells to camouflage them from the immune system, therefore, these erythrocyte-coupled GRNs can circulate in the blood for a long time. Under conditions of hyperglycemia, GOx acts on blood glucose to produce gluconic acid, which causes the rupture of GRNs and efficient release of insulin. Conversely, insulin is only released at the basic rate during hypoglycemia. Thus, EGRS can efficiently and continuously respond to hyperglycemia to maintain blood glucose levels within the normal range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberti, K. G. M. M.; Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553.

    Article  CAS  Google Scholar 

  2. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A. A.; Ogurtsova, K. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843.

    Article  Google Scholar 

  3. Laakso, M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999, 48, 937–942.

    Article  CAS  Google Scholar 

  4. Garyu, J. W.; Meffre, E.; Cotsapas, C.; Herold, K. C. Progress and challenges for treating Type 1 diabetes. J. Autoimmun. 2016, 71, 1–9.

    Article  CAS  Google Scholar 

  5. Wang, J. Q.; Wang, Z. J.; Yu, J. C.; Kahkoska, A. R.; Buse, J. B.; Gu, Z. Glucose-responsive insulin and delivery systems: Innovation and translation. Adv. Mater. 2020, 32, 1902004.

    Article  CAS  Google Scholar 

  6. Yu, J. C.; Zhang, Y. Q.; Yan, J. J.; Kahkoska, A. R.; Gu, Z. Advances in bioresponsive closed-loop drug delivery systems. Int. J. Pharm. 2018, 544, 350–357.

    Article  CAS  Google Scholar 

  7. Bratlie, K. M.; York, R. L.; Invernale, M. A.; Langer, R.; Anderson, D. G. Materials for diabetes therapeutics. Adv. Healthc. Mater. 2012, 1, 267–284.

    Article  CAS  Google Scholar 

  8. Wilson, R.; Turner, A. P. F. Glucose oxidase: An ideal enzyme. Biosens. Bioelectron. 1992, 7, 165–185.

    Article  CAS  Google Scholar 

  9. Huggett, A. S. G.; Nixon, D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet 1957, 270, 368–370.

    Article  Google Scholar 

  10. Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose oxidase—an overview. Biotechnol. Adv. 2009, 27, 489–501.

    Article  CAS  Google Scholar 

  11. Luo, F. Q.; Chen, G. J.; Xu, W.; Zhou, D. J.; Li, J. X.; Huang, Y. C.; Lin, R.; Gu, Z.; Du, J. Z. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Res. 2021, 14, 2689–2696.

    Article  CAS  Google Scholar 

  12. Qi, W.; Yan, X. H.; Fei, J. B.; Wang, A. H.; Cui, Y.; Li, J. B. Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials 2009, 30, 2799–2806.

    Article  CAS  Google Scholar 

  13. Yu, J. C.; Zhang, Y. Q.; Wang, J. Q.; Wen, D.; Kahkoska, A. R.; Buse, J. B.; Gu, Z. Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Res. 2019, 12, 1539–1545.

    Article  CAS  Google Scholar 

  14. Fu, Y.; Liu, W.; Wang, L. Y.; Zhu, B. Y.; Qu, M. K.; Yang, L. Q.; Sun, X.; Gong, T.; Zhang, Z. R.; Lin, Q. et al. Erythrocyte-membrane-camouflaged nanoplatform for intravenous glucose-responsive insulin delivery. Ad. Funct. Mater. 2018, 28, 1802250.

    Article  Google Scholar 

  15. Biagiotti, S.; Paoletti, M. F.; Fraternale, A.; Rossi, L.; Magnani, M. Drug delivery by red blood cells. IUBMB Life 2011, 63, 621–631.

    Article  CAS  Google Scholar 

  16. Bush, L. M.; Healy, C. P.; Javdan, S. B.; Emmons, J. C.; Deans, T. L. Biological cells as therapeutic delivery vehicles. Trends Pharmacol. Sci. 2021, 42, 106–118.

    Article  CAS  Google Scholar 

  17. Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

    Article  CAS  Google Scholar 

  18. Chambers, E.; Mitragotri, S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release 2004, 100, 111–119.

    Article  CAS  Google Scholar 

  19. Xia, D. L.; He, H.; Wang, Y.; Wang, K. Y.; Zuo, H. Q.; Gu, H. Y.; Xu, P. P.; Hu, Y. Ultrafast glucose-responsive, high loading capacity erythrocyte to self-regulate the release of insulin. Acta Biomater. 2018, 69, 301–312.

    Article  CAS  Google Scholar 

  20. Wang, C.; Ye, Y. Q.; Sun, W. J.; Yu, J. C.; Wang, J. Q.; Lawrence, D. S.; Buse, J. B.; Gu, Z. Red blood cells for glucose-responsive insulin delivery. Adv. Mater. 2017, 29, 1606617.

    Article  Google Scholar 

  21. Wang, Y. L.; Khan, A.; Liu, Y. X.; Feng, J.; Dai, L.; Wang, G. H.; Alam, N.; Tong, L.; Ni, Y. H. Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydr. Polym. 2019, 223, 115061.

    Article  CAS  Google Scholar 

  22. Motiei, M.; Sedlařík, V.; Lucia, L. A.; Fei, H. J.; Münster, L. Stabilization of chitosan-based polyelectrolyte nanoparticle cargo delivery biomaterials by a multiple ionic cross-linking strategy. Carbohydr. Polym. 2020, 231, 115709.

    Article  CAS  Google Scholar 

  23. Yao, H.; Wynendaele, E.; Xu, X. L.; Kosgei, A.; De Spiegeleer, B. Circular dichroism in functional quality evaluation of medicines. J. Pharm. Biomed. Anal. 2018, 147, 50–64.

    Article  CAS  Google Scholar 

  24. Di, J. W.; Gao, X.; Du, Y. M.; Zhang, H.; Gao, J.; Zheng, A. P. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J. Pharm. Sci. 2021, 16, 444–458.

    Article  Google Scholar 

  25. Poon, W.; Zhang, Y. N.; Ouyang, B.; Kingston, B. R.; Wu, J. L. Y.; Wilhelm, S.; Chan, W. C. W. Elimination pathways of nanoparticles. ACS Nano 2019, 13, 5785–5798.

    Article  CAS  Google Scholar 

  26. Andrikopoulos, S.; Blair, A. R.; Deluca, N.; Fam, B. C.; Proietto, J. Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1323–E1332.

    Article  CAS  Google Scholar 

  27. Paes, T.; Rolim, L. C.; Filho, C. S.; De Sa, J. R.; Dib, S. A. Awareness of hypoglycemia and spectral analysis of heart rate variability in type 1 diabetes. J. Diabetes Complications 2020, 34, 107617.

    Article  Google Scholar 

  28. Chetan, M. R.; Thrower, S. L.; Narendran, P. What is type 1 diabetes? Medicine 2019, 47, 5–9.

    Article  Google Scholar 

  29. Berenson, D. F.; Weiss, A. R.; Wan, Z. L.; Weiss, M. A. Insulin analogs for the treatment of diabetes mellitus: Therapeutic applications of protein engineering. Ann. NY Acad. Sci. 2011, 1243, E40–E54.

    Article  Google Scholar 

  30. Tékus, V.; Horváth, Á. I.; Csekő, K.; Szabadfi, K.; Kovács-Valasek, A.; Dányádi, B.; Deres, L.; Halmosi, R.; Sághy, É.; Varga, Z. V. et al. Protective effects of the novel amine-oxidase inhibitor multitarget drug SZV 1287 on streptozotocin-induced beta cell damage and diabetic complications in rats. Biomed. Pharmacother. 2021, 134, 111105.

    Article  Google Scholar 

  31. Raghav, A.; Ahmad, J. Glycated serum albumin: A potential disease marker and an intermediate index of diabetes control. Diabetes Metab. Syndr.:Clin. Res. Rev. 2014, 8, 245–251.

    Article  Google Scholar 

  32. Giri, B.; Dey, S.; Das, T.; Sarkar, M.; Banerjee, J.; Dash, S. K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed. Pharmacother. 2018, 107, 306–328.

    Article  CAS  Google Scholar 

  33. Shawahna, R.; Shanti, Y.; Al Zabadi, H.; Sharabati, M.; Alawneh, A.; Shaqu, R.; Taha, I.; Bustami, A. Prevalence and association of clinical characteristics and biochemical factors with complications of diabetes mellitus in Palestinians treated in primary healthcare practice. Diabetes Metab. Syndr.:Clin. Res. Rev. 2018, 12, 693–704.

    Article  Google Scholar 

  34. Jayapandian, C. P.; Chen, Y. J.; Janowczyk, A. R.; Palmer, M. B.; Cassol, C. A.; Sekulic, M.; Hodgin, J. B.; Zee, J.; Hewitt, S. M.; O’Toole, J. et al. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Kidney Int. 2021, 99, 86–101.

    Article  CAS  Google Scholar 

  35. Mitra, M. S.; DeMarco, S.; Holub, B.; Thiruneelakantapillai, L.; Thackaberry, E. A. Development of peptide therapeutics: A nonclinical safety assessment perspective. Regul. Toxicol. Pharmacol. 2020, 117, 104766.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Regional Innovation and Development Joint Fund (No. U20A20411), the National Science Fund for Excellent Young Scholars (No. 82022070).

The animal study protocol was approved by the Institutional Animal Care and Ethics Committee of Sichuan University (No. SYXK2013-113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhirong Zhang or Ling Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Xu, Y., Li, Y. et al. Glucose-responsive erythrocyte-bound nanoparticles for continuously modulated insulin release. Nano Res. 15, 5205–5215 (2022). https://doi.org/10.1007/s12274-022-4105-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4105-0

Keywords

Navigation