Skip to main content
Log in

TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic production of hydrogen peroxide (H2O2) is an ideal pathway for obtaining solar fuels. Herein, an S-scheme heterojunction is constructed in hybrid TiO2/In2S3 photocatalyst, which greatly promotes the separation of photogenerated carriers to foster efficient H2O2 evolution. These composite photocatalysts show a high H2O2 yield of 376 µmol/(L·h). The mechanism of charge transfer and separation within the S-scheme heterojunction is well studied by computational methods and experiments. Density functional theory and in-situ irradiated X-ray photoelectron spectroscopy results reveal distinct features of the S-scheme heterojunction in the TiO2/In2S3 hybrids and demonstrate charge transfer mechanisms. The density functional theory calculation and electron paramagnetic resonance results suggest that O2 reduction to H2O2 follows stepwise one-electron processes. In2S3 shows a much stronger interaction with O2 than TiO2 as well as a higher reduction ability, serving as the active sites for H2O2 generation. The work provides a novel design of S-scheme photocatalyst with high H2O2 evolution efficiency and mechanistically demonstrates the improved separation of charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Y. J.; Khan, I.; Saha, S.; Wu, C. C.; Barman, S. R.; Kao, F. C.; Lin, Z. H. Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nnnoplaees. Nat. Commun. 2021, 12, 180.

    CAS  Google Scholar 

  2. Hou, W. S.; Li, Y. X.; Ouyang, S. X.; Chen, H. Y.; Ye, J. H.; Han, X. P.; Deng, Y. D. Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H2O2 production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. Chem. Commun. 2019, 55, 13279–13282.

    CAS  Google Scholar 

  3. Chen, G. Y.; Liu, J. W.; Li, Q. Q.; Guan, P. F.; Yu, X. F.; Xing, L. S.; Zhang, J.; Che, R. C. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 2019, 12, 2614–2622.

    CAS  Google Scholar 

  4. Zhang, D. D.; Xu, G. Q.; Chen, T.; Chen, F. Photocatalytically green synthesis of H2O2 using 2-ethyl-9,10-anthraquinone as an electron condenser. RSC Adv. 2014, 4, 52199–52202.

    CAS  Google Scholar 

  5. Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

    CAS  Google Scholar 

  6. Dittmeyer, R.; Grunwaldt, J. D.; Pashkova, A. A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide. Catal. Today 2015, 248, 149–159.

    CAS  Google Scholar 

  7. Wilson, N. M.; Flaherty, D. W. Mechanism for the direct synthesis of H2O2 on Pd clusters: Heterolytic reaction pathways at the liquidsolid interface. J. Am. Chem. Soc. 2016, 138, 574–586.

    CAS  Google Scholar 

  8. Liu, Q. R.; Zhou, L.; Liu, L. H.; Li, J. Q.; Wang, S. B.; Znad, H.; Liu, S. M. Magnetic ZnO@Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol. Compos. Part B: Eng. 2020, 200, 108345.

    CAS  Google Scholar 

  9. Liu, Y. S.; Han, J.; Qiu, W.; Gao, W. Hydrogen peroxide generation and photocatalytic degradation of estrone by microstructural controlled ZnO nanorod arrays. Appl. Surf. Sci. 2012, 263, 389–396.

    CAS  Google Scholar 

  10. Moon, G. H.; Kim, W.; Bokare, A. D.; Sung, N. E.; Choi, W. Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 2014, 7, 4023–4028.

    CAS  Google Scholar 

  11. Fuku, K.; Takioka, R.; Iwamura, K.; Todoroki, M.; Sayama, K.; Ikenaga, N. Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4. Appl. Catal. B: Environ. 2020, 272, 119003.

    CAS  Google Scholar 

  12. Hirakawa, H.; Shiota, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Au nanoparticles supported on BiVO4: Effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal. 2016, 6, 4976–4982.

    CAS  Google Scholar 

  13. Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.

    CAS  Google Scholar 

  14. Fu, Y. J.; Liu, C. A.; Zhang, M. L.; Zhu, C.; Li, H.; Wang, H. B.; Song, Y. X.; Huang, H.; Liu, Y.; Kang, Z. H. Photocatalytic H2O2 and H2 generation from living chlorella vulgaris and carbon micro particle comodified g-C3N4. Adv. Energy Mater. 2018, 8, 1802525.

    Google Scholar 

  15. Burek, B. O.; Bahnemann, D. W.; Bloh, J. Z. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal. 2019, 9, 25–37.

    CAS  Google Scholar 

  16. Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68.

    Google Scholar 

  17. Lee, T.; Bui, H. T.; Yoo, J.; Ra, M.; Han, S. H.; Kim, W.; Kwon, W. Formation of TiO2@carbon core/shell nanocomposites from a single molecular layer of aromatic compounds for photocatalytic hydrogen peroxide generation. ACS Appl. Mater. Interfaces 2019, 17, 41196–41203.

    Google Scholar 

  18. Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

    Google Scholar 

  19. Wang, L.; Jin, P. X.; Duan, S. H.; She, H. D.; Huang, J. W.; Wang, Q. Z. In-sttu incorporation of copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933.

    CAS  Google Scholar 

  20. Li, X. Z.; Chen, C. C.; Zhao, J. C. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 2001, 17, 4118–4122.

    CAS  Google Scholar 

  21. Zhang, J. Z.; Zheng, L. H.; Wang, F.; Chen, C.; Wu, H. D.; Leghari, S. A. K.; Long, M. The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2. Appl. Catal. B: Environ. 2020, 269, 118770.

    CAS  Google Scholar 

  22. Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475–484.

    CAS  Google Scholar 

  23. Maurino, V.; Minero, C.; Mariella, G.; Pelizzetti, E. Sustained production of H2O2 on irradiated TiO2-fluoride systems. Chem. Commun. 2005, 2627–2629.

  24. Tsukamoto, D.; Shiro, A.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles. ACS Catal. 2012, 2, 599–603.

    CAS  Google Scholar 

  25. Teranishi, M.; Hoshino, R.; Naya, S. I.; Tada, H. Gold-nanoparticle-loaded carbonate-modified titanium (IV) oxide surface: Visible-light-driven formation of hydrogen peroxide from oxygen. Angew. Chem., Int. Ed. 2016, 55, 12773–12777.

    CAS  Google Scholar 

  26. Tada, H. Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts. Nanoscale Adv. 2019, 1, 4238–4245.

    CAS  Google Scholar 

  27. Zuo, G. F.; Li, B. D.; Guo, Z. L.; Wang, L.; Yang, F.; Hou, W. S.; Zhang, S. T.; Zong, P. X.; Liu, S. S.; Meng, X. G. et al. Efficient photocatalytic hydrogen peroxide production over TiO2 passivated by SnO2. Catalysts 2019, 9, 623.

    CAS  Google Scholar 

  28. Wang, R.; Shi, M. S.; Xu, F. Y.; Qiu, Y.; Zhang, P.; Shen, K. L.; Zhao, Q.; Yu, J. G.; Zhang, Y. F. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat. Commun. 2020, 11, 4465.

    CAS  Google Scholar 

  29. Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

    CAS  Google Scholar 

  30. He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 2020, 272, 119006.

    CAS  Google Scholar 

  31. Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2020, 56, 143–150.

    CAS  Google Scholar 

  32. Liu, C. B.; Meng, D. S.; Li, Y.; Wang, L. L.; Liu, Y. T.; Luo, S. L. Hierarchical architectures of ZnS-In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity. J. Alloys Compel. 2015, 624, 44–52.

    CAS  Google Scholar 

  33. Tiwari, J. N.; Singh, A. N.; Sultan, S.; Kim, K. S. Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Adv. Energy Mater. 2020, 10, 2000280.

    CAS  Google Scholar 

  34. He, R. A.; Liu, H. J.; Liu, H. M.; Xu, D. F.; Zhang, L. Y. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance. J. Mater. Sci. Technol. 2020, 52, 145–151.

    Google Scholar 

  35. He, F.; Meng, A. Y.; Cheng, B.; Ho, W.; Yu, J. G. Enhanced photocatalytic H2-production activity of WO3/TiO2 tepp-chheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9–20.

    CAS  Google Scholar 

  36. Han, M. M.; Yu, L. M.; Chen, W. Y.; Wang, W. Z.; Jia, J. H. Fabrication and photoelectrochemical characteristics of In2S3 nano-flower films on TiO2 nanorods arrays. Appl. Surf. Sci. 2016, 369, 108–114.

    CAS  Google Scholar 

  37. Zuo, Y.; Chen, J. J.; Yang, H. C.; Zhang, M.; Wang, Y. F.; He, G.; Sun, Z. Q. Facile synthesis of TiO2/In2S3/CdS ternary porous heterostructure arrays with enhanced photoelectrochemical and visible-light photocatalytic properties. J. Mater. Chem. C 2019, 7, 9065–9074.

    CAS  Google Scholar 

  38. Ma, Y. S.; Wang, Y.; Jiang, T. Y.; Zhang, F. X.; Li, X. M.; Zhu, Y. Y. Hydrothermal synthesis of novel 1-aminoperylene diimide/TiO2/MoS2 composite with enhanced photocatalytic activity. Sci. Rep. 2020, 10, 22005.

    CAS  Google Scholar 

  39. Wu, R.; Xu, Y.; Xu, R.; Huang, Y.; Zhang, B. Ultrathin-nanosheet-based 3D hierarchical porous In2S3 microspheres: Chemical transformation synthesis, characterization, and enhanced photocatalytic and photoelectrochemical property. J. Mater. Chem. A 2015, 3, 1930–1934.

    CAS  Google Scholar 

  40. Yang, Y.; Tan, H. Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Ho, W. Near-infrared-responsive photocatalysts. Small Methods 2021, 5, 2001042.

    CAS  Google Scholar 

  41. Chai, B.; Peng, T. Y.; Zeng, P.; Mao, J. Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light. J. Mater. Chem. 2011, 21, 14587–14593.

    CAS  Google Scholar 

  42. Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

    CAS  Google Scholar 

  43. Wageh, S.; Al-Ghamdi, A. A.; Liu, L. J. S-scheme heterojunction photocatalyst for CO2 photoreduction. Acta Phys. Chim. Sin. 2021, 37, 2010024.

    Google Scholar 

  44. Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations. Acta Phys. Chim. Sin. 2021, 37, 2010027.

    Google Scholar 

  45. Liu, L. Z.; Hu, T. P.; Dai, K.; Zhang, J. F.; Liang, C. H. A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chin. J. Catal. 2021, 42, 46–55.

    CAS  Google Scholar 

  46. Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

    CAS  Google Scholar 

  47. Mei, F. F.; Li, Z.; Dai, K.; Zhang, J. F.; Liang, C. H. Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production. Chin. J. Catal. 2020, 41, 41–49.

    CAS  Google Scholar 

  48. Wei, J. X.; Chen, Y. W.; Zhang, H. Y.; Zhuang, Z. Y.; Yu, Y. Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction. Chin. J. Catal. 2021, 42, 78–86.

    CAS  Google Scholar 

  49. Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin. J. Catal. 2020, 41, 140–153.

    CAS  Google Scholar 

  50. Chou, J. C.; Liao, L. P. Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method. Thin Solid Films 2005, 476, 157–161.

    CAS  Google Scholar 

  51. Gao, C.; Li, J. T.; Shan, Z. C.; Huang, F. Q.; Shen, H. L. Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Mater. Chem. Phys. 2010, 122, 183–187.

    CAS  Google Scholar 

  52. Štengl, V.; Opluštil, F.; Němec, T. In3+-doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations. Photochem. Photobiol. 2012, 88, 265–276.

    Google Scholar 

  53. Sun, Z. J.; Lv, B. H.; Li, J. S.; Xiao, M.; Wang, X. Y.; Du, P. W. Core-shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. J. Mater. Chem. A 2016, 4, 1598–1602.

    CAS  Google Scholar 

  54. Liu, Y.; Hao, X. Q.; Hu, H. Q.; Jin, Z. L. High efficiency electron transfer realized over NiS2/MoSe2 S-scheme heterojunction in photocatalytic hydrogen evolution. Acta Phys. Chim. Sin. 2021, 37, 2008030.

    Google Scholar 

  55. Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.

    CAS  Google Scholar 

  56. Ge, H. N.; Xu, F. Y.; Cheng, B.; Yu, J. G.; Ho, W. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 2019, 11, 6301–6309.

    CAS  Google Scholar 

  57. Butler, M. A.; Ginley, D. S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 1978, 125, 228–232.

    CAS  Google Scholar 

  58. Gao, R. R.; Cheng, B.; Fan, J. J.; Yu, J. G.; Ho, W. ZnxCd1−xS quantum dot with enhanced photocatalytic H2-production performance. Chin. J. Catal. 2021, 42, 15–24.

    CAS  Google Scholar 

  59. Li, Z. F.; Wu, Z. H.; He, R. A.; Wan, L.; Zhang, S. Y. In2O3−x (OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance. J. Mater. Sci. Technol. 2020, 56, 151–161.

    CAS  Google Scholar 

  60. Xu, F. Y.; Tan, H. Y.; Fan, J. J.; Cheng, B.; Yu, J. G.; Xu, J. S. Electrospun TiO2-based photocatalysts. Sol. RRL 2021, 5, 2000571.

    CAS  Google Scholar 

  61. Qin, D. R.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y. M.; Lv, K. L. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure. J. Mater. Sci. Technol. 2020, 56, 206–215.

    CAS  Google Scholar 

  62. Carp, O.; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177.

    CAS  Google Scholar 

  63. Xia, Y.; Zhang, L. Y.; Hu, B. W.; Yu, J. G.; Al-Ghamdi, A. A.; Wageh, S. Design of highly-active photocatalytic materials for solar fuel production. Chem. Eng. J. 2020, 421, 127732.

    Google Scholar 

  64. Deng, H. Z.; Fei, X. G.; Yang, Y.; Fan, J.; Yu, J. G.; Cheng, B.; Zhang, L. Y. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377.

    CAS  Google Scholar 

  65. Zhao, X. S.; You, Y. Y.; Huang, S. B.; Wu, Y. X.; Ma, Y. Y.; Zhang, G.; Zhang, Z. H. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl. Catal. B: Environ. 2020, 278, 119251.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52073223, 51932007, 51961135303, 21871217, U1905215 and U1705251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linxi Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Cheng, B., Yu, J. et al. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Res. 16, 4506–4514 (2023). https://doi.org/10.1007/s12274-021-3733-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3733-0

Keywords

Navigation