Skip to main content
Log in

In-situ quantification of the surface roughness for facile fabrications of atomically smooth thin films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This work presents an in-situ technique to quantify the layer-by-layer roughness of thin films and heterostructures by measuring the spectral profile of the reflection high-energy electron diffraction (RHEED). The characteristic features of the diffraction spot, including the vertical to lateral size ratio c/b and the asymmetrical ratio c1/c2 along the vertical direction, are found to be quantitatively dependent on the surface roughness. The quantitative relationships between them are established and discussed for different incident angles of high-energy electrons. As an example, the surface roughnesses of LaCoO3 films grown at different temperatures are obtained using such an in-situ technique, which are confirmed by the ex-situ atomic force microscopy. Moreover, the in-situ measured layer-by-layer roughness oscillations of two LaCoO3 films are demonstrated, revealing drastically different information from the intensity oscillations. The experiments assisted with the in-situ technique demonstrate an outstanding high resolution down to ∼ 0.1 Å. Therefore, the new quantitative RHEED technique with real-time feedbacks significantly escalates the thin film synthesis efficiency, especially for achieving atomically smooth surfaces and interfaces. It opens up new prospects for future generations of thin film growth, such as the artificial intelligence-assisted thin film growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiang, X. D.; Sun, X. D.; Briceño, G.; Lou, Y. L.; Wang, K. A; Chang, H.; Wallace-Freedman, W. G.; Chen, S. W; Schultz, P. G. A combinatorial approach to materials discovery. Science 1995, 268, 1738–1740.

    Article  CAS  Google Scholar 

  2. He, G.; Wei, Z. X.; Feng, Z. P.; Yu, X. D.; Zhu, B. Y.; Liu, L.; Jin, K.; Yuan, J.; Huan, Q. Combinatorial laser molecular beam epitaxy system integrated with specialized low-temperature scanning tunneling microscopy. Rev. Sci. Instrum. 2020, 91, 013904.

    Article  CAS  Google Scholar 

  3. Meng, Z.; Yang, Q.; Yip, P. C.; Eyink, K. G.; Taferner, W. T.; Igelnik, B. Combined use of computational intelligence and materials data for on-line monitoring and control of MBE experiments. Eng. Appl. Artif. Intell. 1998, 11, 587–595.

    Article  Google Scholar 

  4. Provence, S. R.; Thapa, S.; Paudel, R.; Truttmann, T. K.; Prakash, A.; Jalan, B.; Comes, R. B. Machine learning analysis of perovskite oxides grown by molecular beam epitaxy. Phys. Rev. Mater. 2020, 4, 083807.

    Article  CAS  Google Scholar 

  5. Vasudevan, R. K.; Tselev, A.; Baddorf, A. P.; Kalinin, S. V. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes. ACS Nano 2014, 8, 10899–10908.

    Article  CAS  Google Scholar 

  6. Eason, R. Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials; John Wiley & Sons: New York, 2007; pp 1–682.

    Google Scholar 

  7. Martin, L. W.; Chu, Y. H.; Ramesh, R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 2010, 68, 89–133.

    Article  Google Scholar 

  8. Braun, W. Applied RHEED: Reflection High-Energy Electron Diffraction During Crystal Growth; Springer: Berlin, 1999.

    Google Scholar 

  9. Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103–113.

    Article  CAS  Google Scholar 

  10. Ge, J. F.; Liu, Z. L.; Liu, C. H.; Gao, C. L.; Qian, D.; Xue, Q. K.; Liu, Y.; Jia, J. F. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 2015, 14, 285–289.

    Article  CAS  Google Scholar 

  11. Lee, H.; Campbell, N.; Lee, J.; Asel, T. J.; Paudel, T. R.; Zhou, H.; Lee, J. W.; Noesges, B.; Seo, J.; Park, B. et al. Direct observation of a two-dimensional hole gas at oxide interfaces. Nat. Mater. 2018, 17, 231–236.

    Article  CAS  Google Scholar 

  12. Fert, A. Nobel Lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 2008, 80, 1517.

    Article  CAS  Google Scholar 

  13. Chambers, S. A.; Engelhard, M. H.; Shutthanandan, V.; Zhu, Z.; Droubay, T. C.; Qiao, L.; Sushko, P. V.; Feng, T.; Lee, H. D.; Gustafsson, T. et al. Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf. Sci. Rep. 2010, 65, 317–352.

    Article  CAS  Google Scholar 

  14. Xie, Y. W.; Hikita, Y.; Bell, C.; Hwang, H. Y. Control of electronic conduction at an oxide heterointerface using surface polar adsorbates. Nat. Commun. 2011, 2, 494.

    Article  Google Scholar 

  15. Dai, W. T.; Adhikari, S.; Garcia-Castro, A. C.; Romero, A. H.; Lee, H.; Lee, J. W.; Ryu, S.; Eom, C. B.; Cen, C. Tailoring LaAlO3/SrTiO3 interface metallicity by oxygen surface adsorbates. Nano Lett. 2016, 16, 2739–2743.

    Article  CAS  Google Scholar 

  16. Benia, H. M.; Lin, C. T.; Kern, K.; Ast, C. R. Reactive chemical doping of the Bi2Se3 topological insulator. Phys. Rev. Lett. 2011, 107, 177602.

    Article  Google Scholar 

  17. van den Broek, B.; Houssa, M.; Lu, A.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Silicene nanoribbons on transition metal dichalcogenide substrates: Effects on electronic structure and ballistic transport. Nano Res. 2016, 9, 3394–3406.

    Article  CAS  Google Scholar 

  18. Sun, X. D.; Li, W. Y.; Wang, X.; Sui, Qi.; Zhang, T. Y.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S. Y. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363.

    Article  CAS  Google Scholar 

  19. Sauvage-Simkin, M.; Pinchaux, R.; Massies, J.; Claverie, P.; Bonnet, J.; Jedrecy, N.; Robinson, I. K. Structure of in-situ grown GaAs(001) reconstructed surfaces by grazing incidence X-ray diffraction. Surf. Sci. 1989, 211–212, 39–47.

    Article  Google Scholar 

  20. Slobodskyy, T.; Schroth, P.; Grigoriev, D.; Minkevich, A. A.; Hu, D. Z.; Schaadt, D. M.; Baumbach, T. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines. Rev. Sci. Instrum. 2012, 83, 105112.

    Article  CAS  Google Scholar 

  21. McKee, R. A.; Walker, F. J.; Conner, J. R.; Specht, E. D. Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon. Appl. Phys. Lett. 1991, 59, 782–784.

    Article  CAS  Google Scholar 

  22. Gruenewald, J. H.; Nichols, J.; Seo, S. S. A. Pulsed laser deposition with simultaneous in situ real-time monitoring of optical spectroscopic ellipsometry and reflection high-energy electron diffraction. Rev. Sci. Instrum. 2013, 84, 043902.

    Article  CAS  Google Scholar 

  23. Lippmaa, M.; Nakagawa, N.; Kawasaki, M.; Ohashi, S.; Koinuma, H. Growth mode mapping of SrTiO3 epitaxy. Appl. Phys. Lett. 2000, 76, 2439–2441.

    Article  CAS  Google Scholar 

  24. Sun, H. Y.; Mao, Z. W.; Zhang, T. W.; Han, L.; Zhang, T. T.; Cai, X. B.; Guo, X.; Li, Y. F.; Zang, Y. P.; Guo, W. et al. Chemically specific termination control of oxide interfaces via layer-by-layer mean inner potential engineering. Nat. Commun. 2018, 9, 2965.

    Article  CAS  Google Scholar 

  25. Iakoubovskii, K.; Mitsuishi, K.; Nakayama, Y.; Furuya, K. Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior. Phys. Rev. B 2008, 77, 104102.

    Article  Google Scholar 

  26. Iakoubovskii, K.; Mitsuishi, K. Elastic scattering of 200 keV electrons in elemental solids: experimental observation of atomic-number-dependent oscillatory behavior. J. Phys. Condens. Matter. 2009, 21, 155402.

    Article  Google Scholar 

  27. Mayol, R.; Salvat, F. Total and transport cross sections for elastic scattering of electrons by atoms. Atom. Data Nucl. Data Tables 1997, 65, 55–154.

    Article  CAS  Google Scholar 

  28. Robinson, I. K.; Tweet, D. J. Surface X-ray diffraction. Rep. Prog. Phys. 1992, 55, 599–651.

    Article  CAS  Google Scholar 

  29. Bhushan, B. Modern Tribology Handbook; CRC Press: Los Angeles, 2000.

    Book  Google Scholar 

  30. Lent, C. S.; Cohen, P. I. Diffraction from stepped surfaces: I. Reversible surfaces. Surf. Sci. 1984, 139, 121–154.

    Article  CAS  Google Scholar 

  31. Korte, U., Maksym, P. A. Role of the step density in reflection high-energy electron diffraction: questioning the step density model. Phys. Rev. Lett. 1997, 78, 2381–2384.

    Article  CAS  Google Scholar 

  32. Sullivan, M. C.; Ward, M. J.; Gutiérrez-Llorente, A.; Adler, E. R.; Joress, H.; Woll, A.; Brock, J. D. Complex oxide growth using simultaneous in situ reflection high-energy electron diffraction and x-ray reflectivity: When is one layer complete? Appl. Phys. Lett. 2015, 106, 031604.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Foundation of China (No. 52072244), the ShanghaiTech Startup Fund, and the Fundamental Research Funds for the Central Universities (No. WK2340000088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Cheng or Xiaofang Zhai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Cheng, L., Zha, J. et al. In-situ quantification of the surface roughness for facile fabrications of atomically smooth thin films. Nano Res. 15, 1654–1659 (2022). https://doi.org/10.1007/s12274-021-3720-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3720-5

Keywords

Navigation