Skip to main content
Log in

Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin

  • Flagship Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Neurologic function implemented soft organic electronic skin holds promise for wide range of applications, such as skin prosthetics, neurorobot, bioelectronics, human-robotic interaction (HRI), etc. Here, we report the development of a fully rubbery synaptic transistor which consists of all-organic materials, which shows unique synaptic characteristics existing in biological synapses. These synaptic characteristics retained even under mechanical stretch by 30%. We further developed a neurological electronic skin in a fully rubbery format based on two mechanoreceptors (for synaptic potentiation or depression) of pressure-sensitive rubber and an all-organic synaptic transistor. By converting tactile signals into Morse Code, potentiation and depression of excitatory postsynaptic current (EPSC) signals allow the neurological electronic skin on a human forearm to communicate with a robotic hand. The collective studies on the materials, devices, and their characteristics revealed the fundamental aspects and applicability of the all-organic synaptic transistor and the neurological electronic skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thompson, W. Synapse elimination in neonatal rat muscle is sensitive to pattern of muscle use. Nature 1983, 302, 614–616.

    Article  CAS  Google Scholar 

  2. Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.

    Article  CAS  Google Scholar 

  3. Shim, H.; Sim, K.; Ershad, F.; Yang, P. Y.; Thukral, A.; Rao, Z. Y.; Kim, H. J.; Liu, Y. H.; Wang, X.; Gu, G. Y. et al. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 2019, 5, eaax4961.

    Article  CAS  Google Scholar 

  4. Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158.

    Article  Google Scholar 

  5. Andreae, L. C.; Burrone, J. The role of spontaneous neurotransmission in synapse and circuit development. J. Neurosci. Res. 2018, 96, 354–359.

    Article  CAS  Google Scholar 

  6. Kim, S.; Lee, B.; Reeder, J. T.; Seo, S. H.; Lee, S. U.; Hourlier-Fargette, A.; Shin, J.; Sekine, Y.; Jeong, H.; Oh, Y. S. et al. Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 27906–27915.

    Article  CAS  Google Scholar 

  7. Rogers, J. A. Nanomesh on-skin electronics. Nat. Nanotechnol. 2017, 12, 839–840.

    Article  CAS  Google Scholar 

  8. Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.

    Article  CAS  Google Scholar 

  9. Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.

    Article  Google Scholar 

  10. Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

    Article  CAS  Google Scholar 

  11. Akbari, M. K.; Zhuiykov, S. A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat. Commun. 2019, 10, 3873.

    Article  Google Scholar 

  12. Zhang, X. M.; Zhuo, Y.; Luo, Q.; Wu, Z. H.; Midya, R.; Wang, Z. R.; Song, W. H.; Wang, R.; Upadhyay, N. K.; Fang, Y. L. et al. An artificial spiking afferent nerve based on mott memristors for neurorobotics. Nat. Commun. 2020, 11, 51.

    Article  CAS  Google Scholar 

  13. Keene, S. T.; Lubrano, C.; Kazemzadeh, S.; Melianas, A.; Tuchman, Y.; Polino, G.; Scognamiglio, P.; Cinà, L.; Salleo, A.; Van De Burgt, Y. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 2020, 19, 969–973.

    Article  CAS  Google Scholar 

  14. Sim, K.; Rao, Z. Y.; Zou, Z. N.; Ershad, F.; Lei, J. M.; Thukral, A.; Chen, J.; Huang, Q. A.; Xiao, J. L.; Yu, C. J. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 2019, 5, eaav9653.

    Article  CAS  Google Scholar 

  15. Wan, C. J.; Cai, P. Q.; Wang, M.; Qian, Y.; Huang, W.; Chen, X. D. Artificial sensory memory. Adv. Mater. 2020, 32, 1902434.

    Article  CAS  Google Scholar 

  16. Wan, C. J.; Cai, P. Q.; Guo, X. T.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z. S.; Luo, Y. F.; Loh, X. J.; Chen, X. D. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602.

    Article  CAS  Google Scholar 

  17. Wan, H. C.; Cao, Y. Q.; Lo, L. W.; Zhao, J. Y.; Sepúlveda, N.; Wang, C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020, 14, 10402–10412.

    Article  CAS  Google Scholar 

  18. Zang, Y. P.; Shen, H. G.; Huang, D. Z.; Di, C. A.; Zhu, D. B. A dual-organic-transistor-based tactile-perception system with signal-processing functionality. Adv. Mater. 2017, 29, 1606088.

    Article  Google Scholar 

  19. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918.

    Article  CAS  Google Scholar 

  20. Ruiz, C.; García-Frutos, E. M.; Hennrich, G.; Gómez-Lor, B. Organic semiconductors toward electronic devices: High mobility and easy processability. J. Phys. Chem. Lett. 2012, 3, 1428–1436.

    Article  CAS  Google Scholar 

  21. Someya, T.; Bao, Z. N.; Malliaras, G. G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385.

    Article  CAS  Google Scholar 

  22. Lanzani, G. Organic electronics meets biology. Nat. Mater. 2014, 13, 775–776.

    Article  CAS  Google Scholar 

  23. Sekitani, T.; Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 2010, 22, 2228–2246.

    Article  CAS  Google Scholar 

  24. Lipomi, D. J.; Bao, Z. N. Stretchable and ultraflexible organic electronics. MRS Bull. 2017, 42, 93–97.

    Article  Google Scholar 

  25. Oh, J. Y.; Kim, S.; Baik, H. K.; Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 2016, 28, 4455–4461.

    Article  CAS  Google Scholar 

  26. Kim, H. J.; Sim, K.; Thukral, A.; Yu, C. J. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 2017, 3, e1701114.

    Article  Google Scholar 

  27. Molina-Lopez, F.; Gao, T. Z.; Kraft, U.; Zhu, C.; Öhlund, T.; Pfattner, R.; Feig, V. R.; Kim, Y.; Wang, S.; Yun, Y. et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 2019, 10, 2676.

    Article  CAS  Google Scholar 

  28. Yang, Q.; Yang, H. H.; Lv, D. X.; Yu, R. J.; Li, E. L.; He, L. H.; Chen, Q. Z.; Chen, H. P.; Guo, T. L. High-performance organic synaptic transistors with an ultrathin active layer for neuromorphic computing. ACS Appl. Mater. Interfaces 2021, 13, 8672–8681.

    Article  CAS  Google Scholar 

  29. Gao, W. T.; Zhu, L. Q.; Tao, J.; Wan, D. Y.; Xiao, H.; Yu, F. Dendrite integration mimicked on starch-based electrolyte-gated oxide dendrite transistors. ACS Appl. Mater. Interfaces 2018, 10, 40008–40013.

    Article  CAS  Google Scholar 

  30. Yu, J. R.; Gao, G. Y.; Huang, J. R.; Yang, X. X.; Han, J.; Zhang, H.; Chen, Y. H.; Zhao, C. L.; Sun, Q. J.; Wang, Z. L. Contact-electrification-activated artificial afferents at femtojoule energy. Nat. Commun. 2021, 12, 1581.

    Article  CAS  Google Scholar 

  31. Wei, H. H.; Shi, R. C.; Sun, L.; Yu, H. Y.; Gong, J. D.; Liu, C.; Xu, Z. P.; Ni, Y.; Xu, J. L.; Xu, W. T. Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 2021, 12, 1068.

    Article  CAS  Google Scholar 

  32. Wang, X. M.; Yan, Y. J.; Li, E. L.; Liu, Y. Q.; Lai, D. X.; Lin, Z. X.; Liu, Y.; Chen, H. P.; Guo, T. L. Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy 2020, 75, 104952.

    Article  CAS  Google Scholar 

  33. Yu, F.; Zhu, L. Q.; Gao, W. T.; Fu, Y. M.; Xiao, H.; Tao, J.; Zhou, J. M. Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities. ACS Appl. Mater. Interfaces 2018, 10, 16881–16886.

    Article  CAS  Google Scholar 

  34. Zhu, J. D.; Yang, Y. C.; Jia, R. D.; Liang, Z. X.; Zhu, W.; Rehman, Z. U.; Bao, L.; Zhang, X. X.; Cai, Y. M.; Song, L. et al. Ion gated synaptic transistors based on 2d van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 2018, 30, 1800195.

    Article  Google Scholar 

  35. Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.

    Article  CAS  Google Scholar 

  36. Gu, J. H.; Park, M.; Kang, K.; Shin, H. C. Morse code representation using emg signals. In 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 2019, pp 1059–1061.

Download references

Acknowledgments

C. Y. would like to thank financial support by the Office of Naval Research grant (N00014-18-1-2338) under Young Investigator Program, the National Science Foundation grants of CAREER (1554499), EFRI (1935291), and CPS (1931893).

Author information

Authors and Affiliations

Authors

Contributions

H. S. and C. Y. conceived and designed the experiment. H. S., S. J., K. S., and J. G. J. performed the experiments. H. S., S. J., and Z. R. characterized device performance. H. S. analyzed the experimental data. J. G. J., and J.-I. H., advised on materials characterization. H. S., and C. Y. wrote the paper.

Corresponding author

Correspondence to Cunjiang Yu.

Additional information

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, H., Jang, S., Jang, J.G. et al. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res. 15, 758–764 (2022). https://doi.org/10.1007/s12274-021-3602-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3602-x

Keywords

Navigation