Skip to main content
Log in

Flexoelectricity enhanced water splitting and hydrogen evolution reaction on grain boundaries of monolayer transition metal dichalcogenides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Our extensive first-principles calculations reveal that the chemical activities of monolayer transition metal dichalcogenides (TMDs) MX2 (M = Mo or W, and X = Te, Se, or S) for water splitting and hydrogen evolution are modified and promoted on their grain boundaries (GBs) when in-plane tensile loadings are applied. Compared with monolayer TMDs without GBs, the flexoelectricity induced by nonuniform deformation and strain gradient significantly enhances the charge polarizations of X and M atoms at the GB sites of monolayer TMDs, which facilitates the dissociation of water molecules on the GB sites and reduces the reaction barrier of hydrogen evolution reaction. The energy barriers of splitting water molecules and hydrogen adsorption free energies on the GB sites decrease with increasing the flexoelectric effect. These results highlight an attractive way of utilizing the flexoelectric effect of GB-containing TMDs to improve their surface catalytic capability for hydrogen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  CAS  Google Scholar 

  2. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  CAS  Google Scholar 

  3. Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456–461.

    Article  CAS  Google Scholar 

  4. Ursúa, A.; Gandía, L.M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426.

    Article  Google Scholar 

  5. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  CAS  Google Scholar 

  6. Tiwari, A. P.; Azam, A.; Novak, T. G.; Prakash, O.; Jeon, S. Chemical strain formation through anion substitution in Cu2WS4 for efficient electrocatalysis of water dissociation. J. Mater. Chem. A 2018, 6, 7786–7793.

    Article  CAS  Google Scholar 

  7. Sirkin, Y. A. P.; Hassanali, A.; Scherlis, D. A. One-dimensional confinement inhibits water dissociation in carbon nanotubes. J. Phys. Chem. Lett. 2018, 9, 5029–5033.

    Article  CAS  Google Scholar 

  8. Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

    Article  CAS  Google Scholar 

  9. Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.

    Article  CAS  Google Scholar 

  10. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting — a critical review. Energy Environ. Sci. 2015, 8, 731–759.

    Article  CAS  Google Scholar 

  11. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  12. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  CAS  Google Scholar 

  13. Akinwande, D.; Brennan, C. J.; Bunch, J. S.; Egberts, P.; Felts, J. R.; Gao, H. J.; Huang, R.; Kim, J. S.; Li, T.; Li, Y. et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Ext. Mech. Lett. 2017, 13, 42–77.

    Article  Google Scholar 

  14. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120.

    Article  CAS  Google Scholar 

  15. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  CAS  Google Scholar 

  16. Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    Article  CAS  Google Scholar 

  17. Dang, K. Q.; Spearot, D. E. Effect of point and grain boundary defects on the mechanical behavior of monolayer MoS2 under tension via atomistic simulations. J. Appl. Phys. 2014, 116, 013508.

    Article  Google Scholar 

  18. Wei, Y. J.; Wu, J. T.; Yin, H. Q.; Shi, X. H.; Yang, R. G.; Dresselhaus, M. The Nature of strength enhancement and weakening by pentagonheptagon defects in graphene. Nat. Mater. 2012, 11, 759–763.

    Article  CAS  Google Scholar 

  19. Zou, X. L.; Liu, Y. Y.; Yakobson, B. I. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 2013, 13, 253–258.

    Article  CAS  Google Scholar 

  20. Wang, S. S.; Sawada, H.; Han, X. Y.; Zhou, S.; Li, S.; Guo, Z. X.; Kirkland, A. I.; Warner, J. H. Preferential Pt nanocluster seeding at grain boundary dislocations in polycrystalline monolayer MoS2. ACS Nano 2018, 12, 5626–5636.

    Article  CAS  Google Scholar 

  21. Zhang, Z. H.; Zou, X. L.; Crespi, V. H.; Yakobson, B. I. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 2013, 7, 10475–10481.

    Article  CAS  Google Scholar 

  22. Xie, J. F.; Qu, H. C.; Xin, J. P.; Zhang, X. X.; Cui, G. W.; Zhang, X. D.; Bao, J.; Tang, B.; Xie, Y. Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Res. 2017, 10, 1178–1188.

    Article  CAS  Google Scholar 

  23. Lin, J. H.; Wang, P. C.; Wang, H. H.; Li, C.; Si, X. Q.; Qi, J. L.; Cao, J.; Zhong, Z. X.; Fei, W. D.; Feng, J. C. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 2019, 6, 1900246.

    Article  Google Scholar 

  24. Han, W. Q.; Liu, Z. H.; Pan, Y. B.; Guo, G. N.; Zou, J. X.; Xia, Y.; Peng, Z. M.; Li, W.; Dong, A. G. Designing champion nanostructures of tungsten dichalcogenides for electrocatalytic hydrogen evolution. Adv. Mater. 2020, 32, 2002584.

    Article  CAS  Google Scholar 

  25. Kostov, M. K.; Santiso, E. E.; George, A. M.; Gubbins, K. E.; Nardelli, M. B. Dissociation of water on defective carbon substrates. Phys. Rev. Lett. 2005, 95, 136105.

    Article  CAS  Google Scholar 

  26. Miao, M.; Shi, H.; Wang, Q.; Liu, Y. C. The Ti4 cluster activates water dissociation on defective graphene. Phys. Chem. Chem. Phys. 2014, 16, 5634–5639.

    Article  CAS  Google Scholar 

  27. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    Article  CAS  Google Scholar 

  28. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  CAS  Google Scholar 

  29. Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592–4597.

    Article  CAS  Google Scholar 

  30. Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

    Article  CAS  Google Scholar 

  31. Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.

    Article  CAS  Google Scholar 

  32. Shi, W. H.; Guo, Y. F.; Zhang, Z. H.; Guo, W. L. Flexoelectricity in monolayer transition metal dichalcogenides. J. Phys. Chem. Lett. 2018, 9, 6841–6846.

    Article  CAS  Google Scholar 

  33. Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

    Article  CAS  Google Scholar 

  34. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

    Article  CAS  Google Scholar 

  35. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  36. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  37. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  38. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    Article  CAS  Google Scholar 

  39. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  40. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

    Article  CAS  Google Scholar 

  41. Seo, B.; Jung, G.; Sa, Y. J.; Jeong, H. Y.; Cheon, J. Y.; Lee, J. H.; Kim, H. Y.; Kim, J. C.; Shin, H. S.; Kwak, S. K. et al. Monolayerprecision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano 2015, 9, 3728–3739.

    Article  CAS  Google Scholar 

  42. Pandey, M.; Vojvodic, A.; Thygesen, K. S.; Jacobsen, K. W. Two-dimensional metal dichalcogenides and oxides for hydrogen evolution: A computational screening approach. J. Phys. Chem. Lett. 2015, 6, 1577–1585.

    Article  CAS  Google Scholar 

  43. Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.

    Article  CAS  Google Scholar 

  44. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.

    Article  CAS  Google Scholar 

  45. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

    Article  Google Scholar 

  46. Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11972186, 11890674, and 51921003), the Fundamental Research Funds for the Central Universities (No. NE2019001) of China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufeng Guo or Wanlin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, M., Wang, D., Zhang, Z. et al. Flexoelectricity enhanced water splitting and hydrogen evolution reaction on grain boundaries of monolayer transition metal dichalcogenides. Nano Res. 15, 978–984 (2022). https://doi.org/10.1007/s12274-021-3584-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3584-8

Keywords

Navigation