Skip to main content
Log in

Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The evolution of membrane-type electronics has facilitated the development of stick-and-play systems, which confer diverse electrical functions to various planar or arbitrary curvilinear surfaces. The stick-and-play concept is based on the development of thin electronic devices in a printable format and their subsequent transfer to target surfaces. The development of this technology requires control of the interfacial adhesion of the electronic prints for retrieval from a carrier and transfer to the target surface. First, we discuss the transfer printing for membrane-type electronics, starting from an overview of materials available for flexible substrates, transfer printing of electronic prints for retrieval, and assembly for further integration. Second, we explain the stick-and-play concept based on fabricated membrane-type electronics; “stick” and “play” refer to the transfer of electronic devices and the performance of their electronic functions, respectively. In particular, we broadly survey various methods based on micro/nanostructures, including gecko-inspired, interlocking, cephalopod-sucker-inspired, and cilia structures, which can be employed to stick-and-play systems for enhancing interfacial adhesion with complex target surfaces under dynamic and wet conditions. Finally, we highlight the stick-and-play system application of micro/nanostructures for skin-attachable biomedical electronics, e-textiles, and environmental monitoring electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yokota, T.; Nakamura, T.; Kato, H.; Mochizuki, M.; Tada, M.; Uchida, M.; Lee, S.; Koizumi, M.; Akio, W. Y.; Takimoto, A. et al. A conformable imager for biometric authentication and vital sign measurement. Nat. Electron. 2020, 3, 113–121.

    Article  Google Scholar 

  2. Song, E. M.; Chiang, C. H.; Li, R.; Jin, X.; Zhao, J. N.; Hill, M.; Xia, Y.; Li, L. Z.; Huang, Y. M.; Won, S. M. et al. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proc. Natl. Acad. Sci. USA 2019, 116, 15398–15406.

    Article  CAS  Google Scholar 

  3. Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L. K.; Li, M.; Wang, S. D.; Ma, R.; Jin, S. H.; Kang, Z. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773–2778.

    Article  CAS  Google Scholar 

  4. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  CAS  Google Scholar 

  5. Lee, W.; Kim, D.; Rivnay, J.; Matsuhisa, N.; Lonjaret, T.; Yokota, T.; Yawo, H.; Sekino, M.; Malliaras, G. G.; Someya, T. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays. Adv. Mater. 2016, 28, 9722–9728.

    Article  CAS  Google Scholar 

  6. Lee, W.; Kim, D.; Matsuhisa, N.; Nagase, M.; Sekino, M.; Malliaras, G. G.; Yokota, T.; Someya, T. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl. Acad. Sci. USA 2017, 114, 10554–10559.

    Article  CAS  Google Scholar 

  7. Lee, W.; Kobayashi, S.; Nagase, M.; Jimbo, Y.; Saito, I.; Inoue, Y.; Yambe, T.; Sekino, M.; Malliaras, G. G.; Yokota, T. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 2018, 4, eaau2426.

    Article  CAS  Google Scholar 

  8. Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T. et al. Self-powered ultraflexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516–521.

    Article  CAS  Google Scholar 

  9. Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J. L.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511–517.

    Article  CAS  Google Scholar 

  10. Tian, L. M.; Zimmerman, B.; Akhtar, A.; Yu, K. J.; Moore, M.; Wu, J.; Larsen, R. J.; Lee, J. W.; Li, J. H.; Liu, Y. H. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 2019, 3, 194–205.

    Article  Google Scholar 

  11. Choi, M. K.; Park, O. K.; Cho, C.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, D. J.; Kim, M.; Hyun, W.; Kim, S. J. et al. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. 2016, 5, 80–87.

    Article  CAS  Google Scholar 

  12. Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839–6846.

    Article  CAS  Google Scholar 

  13. Kim, D. H.; Lu, N. S.; Ghaffari, R.; Kim, Y. S.; Lee, S. P.; Xu, L. Z.; Wu, J.; Kim, R. H.; Song, J. Z.; Liu, Z. J. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 2011, 10, 316–323.

    Article  CAS  Google Scholar 

  14. Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.

    Article  CAS  Google Scholar 

  15. Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes III, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753.

    Article  CAS  Google Scholar 

  16. Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.

    Article  CAS  Google Scholar 

  17. Kaltenbrunner, M. Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; Bauer, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.

    Article  CAS  Google Scholar 

  18. Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai. T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970.

    Article  CAS  Google Scholar 

  19. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  CAS  Google Scholar 

  20. Kim, M. S.; Lee, G. J.; Choi, C.; Kim, M. S.; Lee, M.; Liu, S. Y.; Cho, K. W.; Kim, H. M.; Cho, H.; Choi, M. K. et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 2020, 3, 546–553.

    Article  Google Scholar 

  21. Lee, H. E.; Kim, S.; Ko, J.; Yeom, H. I.; Byun, C. W.; Lee, S. H.; Joe, D. J.; Im, T. H.; Park, S. H. K.; Lee, K. J. Skin-like oxide thin-film transistors for transparent displays. Adv. Funct. Mater. 2016, 26, 6170–6178.

    Article  CAS  Google Scholar 

  22. Yun, S. O.; Hwang, Y.; Park, J.; Jeong, Y.; Kim, S. H.; Noh, B. I.; Jung, H. S.; Jang, H. S.; Hyun, Y.; Choa, S. H. et al. Sticker-type Alq3-based OLEDs based on printable ultrathin substrates in periodically anchored and suspended configurations. Adv. Mater. 2013, 25, 5626–5631.

    Article  CAS  Google Scholar 

  23. Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.

    Article  CAS  Google Scholar 

  24. Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 2012, 6, 105–110.

    Article  CAS  Google Scholar 

  25. Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T. Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499.

    Article  CAS  Google Scholar 

  26. Kim, H. S.; Brueckner, E.; Song, J. Z.; Li, Y. H.; Kim, S.; Lu, C. F.; Sulkin, J.; Choquette, K.; Huang, Y. G.; Nuzzo, R. G. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl. Acad. Sci. USA 2011, 108, 10072–10077.

    Article  CAS  Google Scholar 

  27. Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.

    Article  CAS  Google Scholar 

  28. Menard, E.; Lee, K. J.; Khang, D. Y.; Nuzzo, R. G.; Rogers, J. A. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 2004, 84, 5398–5400.

    Article  CAS  Google Scholar 

  29. Baca, A. J.; Meitl, M. A.; Ko, H. C.; Mack, S.; Kim, H. S.; Dong, J.; Ferreira, P. M.; Rogers, J. A. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv. Funct. Mater. 2007, 17, 3051–3062.

    Article  CAS  Google Scholar 

  30. Ko, H. C.; Shin, G.; Wang, S. D.; Stoykovich, M. P.; Lee, J. W.; Kim, D. H.; Ha, J. S.; Huang, Y. G.; Hwang, K. C.; Rogers, J. A. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 2009, 5, 2703–2709.

    Article  CAS  Google Scholar 

  31. Kim, D. H.; Ahn, J. H.; Choi, W. M.; Kim, H. S.; Kim, T. H.; Song, J. Z.; Huang, Y. Y.; Liu, Z. J.; Lu, C.; Rogers, J. A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507–511.

    Article  CAS  Google Scholar 

  32. Ahn, J. H.; Kim, H. S.; Menard, E.; Lee, K. J.; Zhu, Z. T.; Kim, D. H.; Nuzzo, R. G.; Rogers, J. A. Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 2007, 90, 213501.

    Article  CAS  Google Scholar 

  33. Yoon, J.; Baca, A. J.; Park, S. I.; Elvikis, P.; Geddes III, J. B.; Li, L. F.; Kim, R. H.; Xiao, J. L.; Wang, S. D.; Kim, T. H. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 2008, 7, 907–915.

    Article  CAS  Google Scholar 

  34. Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  CAS  Google Scholar 

  35. Cao, Q.; Hur, S. H.; Zhu, Z. T.; Sun, Y. G.; Wang, C. J.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304–309.

    Article  CAS  Google Scholar 

  36. Cao, Q.; Xia, M. G.; Shim, M.; Rogers, J. A. Bilayer organic-inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p-n diodes on plastic substrates. Adv. Funct. Mater. 2006, 16, 2355–2362.

    Article  CAS  Google Scholar 

  37. Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

    Article  CAS  Google Scholar 

  38. Lee, K, J.; Lee, J.; Hwang, H.; Reitmeier, Z. J.; Davis, R. F.; Rogers, J. A.; Nuzzo, R. G. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. Small 2005, 1, 1164–1168.

    Article  CAS  Google Scholar 

  39. Kim, T. H.; Choi, W. M.; Kim, D. H.; Meitl, M. A.; Menard, E.; Jiang, H. Q.; Carlisle, J. A.; Rogers, J. A. Printable, flexible, and stretchable forms of ultrananocrystalline diamond with applications in thermal management. Adv. Mater. 2008, 20, 2171–2176.

    Article  CAS  Google Scholar 

  40. Phan, H. P.; Zhong, Y. S.; Nguyen, T. K.; Park, Y.; Dinh, T.; Song, E. M.; Vadivelu, R. K.; Masud, M. K.; Li, J. H.; Shiddiky, M. J. A. et al. Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 2019, 13, 11572–11581.

    Article  CAS  Google Scholar 

  41. Pham, T. A.; Nguyen, T. K.; Vadivelu, R. K.; Dinh, T.; Qamar, A.; Yadav, S.; Yamauchi, Y.; Rogers, J. A.; Nguyen, N. T.; Phan, H. P. A versatile sacrificial layer for transfer printing of wide bandgap materials for implantable and stretchable bioelectronics. Adv. Funct. Mater. 2020, 30, 2004655.

    Article  CAS  Google Scholar 

  42. Oh, D. W.; Kim, S.; Rogers, J. A.; Cahill, D. G.; Sinha, S. Interfacial thermal conductance of transfer-printed metal films. Adv. Mater. 2011, 23, 5028–5033.

    Article  CAS  Google Scholar 

  43. Kim, D. H.; Song, J. Z.; Choi, W. M.; Kim, H. S.; Kim, R. H.; Liu, Z. J.; Huang, Y. Y.; Hwang, K. C.; Zhang, Y. W.; Rogers, J. A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18675–18680.

    Article  CAS  Google Scholar 

  44. Kim, D. H.; Kim, Y. S.; Wu, J.; Liu, Z. J.; Song, J. Z.; Kim, H. S.; Huang, Y. Y.; Hwang, K. C.; Rogers, J. A. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 2009, 21, 3703–3707.

    Article  CAS  Google Scholar 

  45. Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685.

    Article  CAS  Google Scholar 

  46. Yang, S. Y.; O’Cearbhaill, E. D.; Sisk, G. C.; Park, K. M.; Cho, W. K.; Villiger, M.; Bouma, B. E.; Pomahac, B.; Karp, J. M. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun. 2013, 4, 1702.

    Article  CAS  Google Scholar 

  47. Pang, C.; Kim, S. M.; Rahmawan, Y.; Suh, K. Y. Beetle-inspired bidirectional, asymmetric interlocking using geometry-tunable nanohairs. ACS Appl. Mater. Interfaces 2012, 4, 4225–4230.

    Article  CAS  Google Scholar 

  48. Pang, C.; Kim, T. I.; Bae, W. G.; Kang, D.; Kim, S. M.; Suh, K. Y. Bioinspired reversible interlocker using regularly arrayed high aspect-ratio polymer fibers. Adv. Mater. 2012, 24, 475–479.

    Article  CAS  Google Scholar 

  49. Chen, Y. C.; Yang, H. T. Octopus-inspired assembly of nanosucker arrays for dry/wet adhesion. ACS Nano 2017, 11, 5332–5338.

    Article  CAS  Google Scholar 

  50. Baik, S.; Kim, D. W.; Park, Y.; Lee, T. J.; Bhang, S. H.; Pang, C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 2017, 546, 396–400.

    Article  CAS  Google Scholar 

  51. Yoon, J.; Jeong, Y.; Kim, H.; Yoo, S.; Jung, H. S.; Kim, Y.; Hwang, Y.; Hyun, Y.; Hong, W. K.; Lee, B. H. et al. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing. Nat. Commun. 2016, 7, 11477.

    Article  CAS  Google Scholar 

  52. Hwang, Y.; Yoo, S.; Lim, N.; Kang, S. M.; Yoo, H.; Kim, J.; Hyun, Y.; Jung, G. Y.; Ko, H. C. Enhancement of interfacial adhesion using micro/nanoscale hierarchical cilia for randomly accessible membrane-type electronic devices. ACS Nano 2020, 14, 118–128.

    Article  CAS  Google Scholar 

  53. Sarma, K. R. Flexible displays: TFT technology: Substrate options and TFT processing strategies. In Handbook of Visual Display Technology; Chen, J. L.; Cranton, W.; Fihn, M., Eds.; Springer: Berlin Heidelberg, 2012; pp 897–932.

    Chapter  Google Scholar 

  54. Kattamis, A. Z.; Giebink, N.; Cheng, I. C.; Wagner, S.; Forrest, S. R.; Hong, Y.; Cannella, V. Active-matrix organic light-emitting displays employing two thin-film-transistor a-Si:H pixels on flexible stainless-steel foil. J. Soc. Inf. Disp. 2007, 15, 433–437.

    Article  CAS  Google Scholar 

  55. Chuang, T. K.; Troccoli, M.; Hatalis, M.; Voutsas, A. T. Polysilicon TFT technology on flexible metal foil for AMPLED displays. J. Soc. Inf. Disp. 2007, 15, 455–461.

    Article  CAS  Google Scholar 

  56. MacDonald, W. A.; Looney, M. K.; MacKerron, D.; Eveson, R.; Adam, R.; Hashimoto, K.; Rakos, K. Latest advances in substrates for flexible electronics. J. Soc. Inf. Disp. 2007, 15, 1075–1083.

    Article  CAS  Google Scholar 

  57. Sharpe, W. N. Jr.; Pulskamp, J.; Gianola, D. S.; Eberl, C.; Polcawich, R. G.; Thompson, R. J. Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 2007, 47, 649–658.

    Article  CAS  Google Scholar 

  58. Park, K.; Lee, D. K.; Kim, B. S.; Jeon, H.; Lee, N. E.; Whang, D.; Lee, H. J.; Kim, Y. J.; Ahn, J. H. Stretchable, transparent zinc oxide thin film transistors. Adv. Funct. Mater. 2010, 20, 3577–3582.

    Article  CAS  Google Scholar 

  59. Ong, C. W.; Zong, D. G.; Aravind, M.; Choy, C. L.; Lu, D. R. Tensile strength of zinc oxide films measured by a microbridge method. J. Mater. Res. 2003, 18, 2464–2472.

    Article  CAS  Google Scholar 

  60. Chen, Z.; Cotterell, B.; Wang, W. The fracture of brittle thin films on compliant substrates in flexible displays. Eng. Fract. Mech. 2002, 69, 597–603.

    Article  Google Scholar 

  61. Han, M. J.; Khang, D. Y. Glass and plastics platforms for foldable electronics and displays. Adv. Mater. 2015, 27, 4969–4974.

    Article  CAS  Google Scholar 

  62. Yoo, J. I.; Jang, H. S.; Jang, J.; Yoon, J.; Kwon, O. Y.; Park, J. J.; Kang, S. M.; Yoo, T. J.; Kim, S. H.; Lee, B. H. et al. Reliable peripheral anchor-assisted transfer printing of ultrathin SiO2 for a transparent and flexible IGZO-based inverter. Microelectron. Eng. 2018, 197, 15–22.

    Article  CAS  Google Scholar 

  63. Chen, J. K.; He, X. L.; Wang, W. B.; Xuan, W. P.; Zhou, J.; Wang, X. Z.; Dong, S. R.; Garner, S.; Cimo, P.; Luo, J. K. Bendable transparent ZnO thin film surface acoustic wave strain sensors on ultra-thin flexible glass substrates. J. Mater. Chem. C 2014, 2, 9109–9114.

    Article  CAS  Google Scholar 

  64. Ghosh, D. S.; Liu, Q.; Mantilla-Perez, P.; Chen, T. L.; Mkhitaryan, V.; Huang, M. H.; Garner, S. Martorell, J.; Pruneri, V. Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells. Adv. Funct. Mater. 2015, 25, 7309–7316.

    Article  CAS  Google Scholar 

  65. Tavakoli, M. M.; Tsui, K. H.; Zhang, Q. P.; He, J.; Yao, Y. Li, D. D.; Fan, Z. Y. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano 2015, 9, 10287–10295.

    Article  CAS  Google Scholar 

  66. Li, G. J.; Song, E. M.; Huang, G. S.; Guo, H. L.; Ma, F.; Zhou, B.; Mei, Y. F. High-temperature-triggered thermally degradable electronics based on flexible silicon nanomembranes. Adv. Funct. Mater. 2018, 28, 1801448.

    Article  CAS  Google Scholar 

  67. Chung, H. J.; Kim, T. I.; Kim, H. S.; Wells, S. A.; Jo, S.; Ahmed, N.; Jung, Y. H.; Won, S. M.; Bower, C. A.; Rogers, J. A. Fabrication of releasable single-crystal silicon-metal oxide field-effect devices and their deterministic assembly on foreign substrates. Adv. Funct. Mater. 2011, 21, 3029–3036.

    Article  CAS  Google Scholar 

  68. Lee, E. K.; Baruah, R. K.; Leem, J. W.; Park, W.; Kim, B. H.; Urbas, A.; Ku, Z.; Kim, Y. L.; Alam, M. A.; Lee, C. H. Fractal web design of a hemispherical photodetector array with organic-dye-sensitized graphene hybrid composites. Adv. Mater. 2020, 32, 2004456.

    Article  CAS  Google Scholar 

  69. Liu, Y. J.; Liu, Y. D.; Qin, S. C.; Xu, Y. B.; Zhang, R.; Wang, F. Q. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res. 2017, 10, 1880–1887.

    Article  CAS  Google Scholar 

  70. Lee, K. J.; Motala, M. J.; Meitl, M. A.; Childs, W. R.; Menard, E.; Shim, A. K.; Rogers, J. A.; Nuzzo, R. G. Large-area, selective transfer of microstructured silicon: A printing-based approach to highperformance thin-film transistors supported on flexible substrates. Adv. Mater. 2005, 17, 2332–2336.

    Article  CAS  Google Scholar 

  71. Yoon, J.; Li. L. F.; Semichaevsky, A. V.; Ryu, J. H.; Johnson, H. T.; Nuzzo, R. G.; Rogers, J. A. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides. Nat. Commun. 2011, 2, 343.

    Article  CAS  Google Scholar 

  72. Kim, E.; Cho, H.; Kim, K.; Koh, T. W.; Chung, J.; Lee, J.; Park, Y.; Yoo, S. A facile route to efficient, low-cost flexible organic light-emitting diodes: Utilizing the high refractive index and built-in scattering properties of industrial-grade PEN substrates. Adv. Mater. 2015, 27, 1624–1631.

    Article  CAS  Google Scholar 

  73. Yoon, J.; Sung, H.; Lee, G.; Cho, W.; Ahn, N.; Jung, H. S.; Choi, M. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ. Sci. 2017, 10, 337–345.

    Article  CAS  Google Scholar 

  74. Kwon, H.; Choi, W.; Lee, D.; Lee, Y.; Kwon, J.; Yoo, B.; Grigoropoulos, P. C.; Kim, S. Selective and localized laser annealing effect for highperformance flexible multilayer MoS2 thin-film transistors. Nano Res. 2014, 7, 1137–1145.

    Article  CAS  Google Scholar 

  75. Koo, J.; MacEwan, M. R.; Kang, S. K.; Won, S. M.; Stephen, M.; Gamble, P.; Xie, Z. Q.; Yan, Y.; Chen, Y. Y.; Shin, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018, 24, 1830–1836.

    Article  CAS  Google Scholar 

  76. Bai, W. B.; Shin, J.; Fu, R. X.; Kandela, I.; Lu, D.; Ni, X. Y.; Park, Y.; Liu, Z. H.; Hang, T.; Wu, D. et al. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 2019, 3, 644–654.

    Article  Google Scholar 

  77. Chang, J. K.; Chang, H. P.; Guo, Q. L.; Koo, J.; Wu, C. I.; Rogers, J. A. Biodegradable electronic systems in 3D, heterogeneously integrated formats. Adv. Mater. 2018, 30, 1704955.

    Article  CAS  Google Scholar 

  78. Ito, H.; Oka, W.; Goto, H.; Umeda, H. Plastic substrates for flexible displays. Jpn. J. Appl. Phys. 2006, 45, 4325–4329.

    Article  CAS  Google Scholar 

  79. Gleskova, H.; Cheng, I. C.; Wagner, S.; Suo, Z. G. Mechanical theory of the film-on-substrate-foil structure: Curvature and overlay alignment in amorphous silicon thin-film devices fabricated on free-standing foil substrates. In Flexible Electronics: Materials and Applications; Salleo, A.; Wong, W. S., Eds.; Springer: Boston, 2009; pp 29–51.

    Chapter  Google Scholar 

  80. Yu, W. J.; Chae, S. H.; Lee, S. Y.; Duong, D. L.; Lee, Y. H. Ultratransparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv. Mater. 2011, 23, 1889–1893.

    Article  CAS  Google Scholar 

  81. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

    Article  CAS  Google Scholar 

  82. Ko, H. C.; Baca, A. J.; Rogers, J. A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett. 2006, 6, 2318–2324.

    Article  CAS  Google Scholar 

  83. Mack, S.; Meitl, M. A.; Baca, A. J.; Zhu, Z. T.; Rogers, J. A. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers. Appl. Phys. Lett. 2006, 88, 213101.

    Article  CAS  Google Scholar 

  84. Hwang, Y.; Cho, H. A.; Kim, S. H.; Jang, H. S.; Hyun, Y.; Chun, J. Y.; Park, S. J.; Ko, H. C. Printable ultrathin substrates formed on a concave-convex underlayer for highly flexible membrane-type electrode stickers. Soft Matter 2012, 8, 7598–7603.

    Article  CAS  Google Scholar 

  85. Kim, S. H.; Yoon, J.; Yun, S. O.; Hwang, Y.; Jang, H. S.; Ko, H. C. Ultrathin sticker-type ZnO thin film transistors formed by transfer printing via topological confinement of water-soluble sacrificial polymer in dimple structure. Adv. Funct. Mater. 2013, 23, 1375–1382.

    Article  CAS  Google Scholar 

  86. Kim, S.; Son, J. H.; Lee, S. H.; You, B. K.; Park, K. I.; Lee, H. K.; Byun, M.; Lee, K. J. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv. Mater. 2014, 26, 7480–7487.

    Article  CAS  Google Scholar 

  87. Kim, D. H.; Yoo, H. G.; Hong, S. M.; Jang, B.; Park, D. Y.; Joe, D. J.; Kim, J. H.; Lee, K. J. Simultaneous roll transfer and interconnection of flexible silicon NAND flash memory. Adv. Mater. 2016, 28, 8371–8378.

    Article  CAS  Google Scholar 

  88. Kim, D. H.; Lee, H. E.; You, B. K.; Cho, S. B.; Mishra, R.; Kang, I. S.; Lee, K. J. Flexible crossbar-structured phase change memory array via Mo-based interfacial physical lift-off. Adv. Funct. Mater. 2019, 29, 1806338.

    Article  CAS  Google Scholar 

  89. Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; Gomez, L.; de Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.

    Article  CAS  Google Scholar 

  90. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  CAS  Google Scholar 

  91. Kim, S.; Wu, J.; Carlson, A.; Jin, S. H.; Kovalsky, A.; Glass, P.; Liu, Z. J.; Ahmed, N.; Elgan, S. L.; Chen, W. Q. et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc. Natl. Acad. Sci. USA 2010, 107, 17095–17100.

    Article  CAS  Google Scholar 

  92. Carlson, A.; Kim-Lee, H. J.; Wu, J.; Elvikis, P.; Cheng, H. Y.; Kovalsky, A.; Elgan, S.; Yu, Q. M.; Ferreira, P. M.; Huang, Y. G. et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl. Phys. Lett. 2011, 98, 264104.

    Article  CAS  Google Scholar 

  93. Yang, Y. M.; Hwang, Y.; Cho, H. A.; Song, J. H.; Park, S. J.; Rogers, J. A.; Ko, H. C. Arrays of silicon micro/nanostructures formed in suspended configurations for deterministic assembly using flat and roller-type stamps. Small 2011, 7, 484–491.

    Article  CAS  Google Scholar 

  94. Keum, H.; Yang, Z. N.; Han, K. W.; Handler, D. E.; Nguyen, T. N.; Schutt-Aine, J.; Bahl, G.; Kim, S. Microassembly of heterogeneous materials using transfer printing and thermal processing. Sci. Rep. 2016, 6, 29925.

    Article  CAS  Google Scholar 

  95. Yoon, J.; Jo, S.; Chun I. S.; Jung, I.; Kim, H. S.; Meitl, M.; Menard, E.; Li, X. L.; Coleman, J. J.; Paik, U. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 2010, 465, 329–333.

    Article  CAS  Google Scholar 

  96. Fang, H.; Yu, K. J.; Gloschat, C.; Yang, Z. J.; Song, E. M.; Chiang, C. H.; Zhao, J. N.; Won, S. M.; Xu, S. Y.; Trumpis, M. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 2017, 1, 0038.

    Article  CAS  Google Scholar 

  97. Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.

    Article  CAS  Google Scholar 

  98. Linghu, C. H.; Zhang, S.; Wang, C. J.; Song, J. Z. Transfer printing techniques for flexible and stretchable inorganic electronics. npj Flex. Electron. 2018, 2, 26.

    Article  CAS  Google Scholar 

  99. Carlson, A.; Bowen, A. M.; Huang, Y. G.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 2012, 24, 5284–5318.

    Article  CAS  Google Scholar 

  100. Wang, S. D.; Li, M.; Wu, J.; Kim, D. H.; Lu, N. S.; Su, Y. W.; Kang, Z.; Huang, Y. G.; Rogers, J. A. Mechanics of epidermal electronics. J. Appl. Mech. 2012, 79, 031022.

    Article  Google Scholar 

  101. Autumn, K.; Sitti, M.; Liang, Y. A.; Peattie, A. M.; Hansen, W. R.; Sponberg, S.; Kenny, T. W.; Fearing, R.; Israelachvili, J. N.; Full, R. J. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 2002, 99, 12252–12256.

    Article  CAS  Google Scholar 

  102. Huber, G.; Mantz, H. Spolenak, R.; Mecke, K.; Jacobs, K.; Gorb, S. N.; Arzt, E. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 2005, 102, 16293–16296.

    Article  CAS  Google Scholar 

  103. Autumn, K.; Dittmore, A.; Santos, D.; Spenko, M.; Cutkosky, M. Frictional adhesion: A new angle on gecko attachment. J. Exp. Biol. 2006, 209, 3569–3579.

    Article  CAS  Google Scholar 

  104. Zhao, B. X.; Pesika, N.; Rosenberg, K.; Tian, Y.; Zeng, H. B.; McGuiggan, P.; Autumn, K.; Israelachvili, J. Adhesion and friction force coupling of gecko setal arrays: Implications for structured adhesive surfaces. Langmuir 2008, 24, 1517–1524.

    Article  CAS  Google Scholar 

  105. Zhao, B. X.; Pesika, N.; Zeng, H. B.; Wei, Z. S.; Chen, Y. F.; Autumn, K.; Turner, K. Israelachvili, J. Role of tilted adhesion fibrils (setae) in the adhesion and locomotion of gecko-like systems. J. Phys. Chem. B 2009, 113, 3615–3621.

    Article  CAS  Google Scholar 

  106. Bartlett, M. D.; Croll, A. B.; King, D. R.; Paret, B. M.; Irschick, D. J.; Crosby, A. J. Looking beyond fibrillar features to scale gecko-like adhesion. Adv. Mater. 2012, 24, 1078–1083.

    Article  CAS  Google Scholar 

  107. Bartlett, M. D.; Crosby, A. J. High capacity, easy release adhesives from renewable materials. Adv. Mater. 2014, 26, 3405–3409.

    Article  CAS  Google Scholar 

  108. Wang, L.; Ha, K. H.; Rodin, G. J.; Liechti, K. M.; Lu, N. S. Mechanics of crater-enabled soft dry adhesives: A review. Front. Mech. Eng. 2020, 6, 601510.

    Article  Google Scholar 

  109. Lee, J.; Majidi, C.; Schubert, B.; Fearing, R. S. Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour. J. Roy. Soc. Interface 2008, 5, 835–844.

    Article  Google Scholar 

  110. Lu, G. W.; Hong, W. J.; Tong, L.; Bai, H.; Wei, Y.; Shi, G. Q. Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces. ACS Nano 2008, 2, 2342–2348.

    Article  CAS  Google Scholar 

  111. Zhao, Y.; Tong, T.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. J. Vac. Sci. Technol. B 2006, 24, 331–335.

    Article  CAS  Google Scholar 

  112. Hu, H.; Tian, H. M.; Shao, J. Y.; Li, X. M.; Wang, Y.; Wang, Y.; Tian, Y.; Lu, B. H. Discretely supported dry adhesive film inspired by biological bending behavior for enhanced performance on a rough surface. ACS Appl. Mater. Interfaces 2017, 9, 7752–7760.

    Article  CAS  Google Scholar 

  113. Tao, D. S.; Gao, X.; Lu, H. Y.; Liu, Z. Y.; Li, Y.; Tong, H.; Pesika, N.; Meng, Y. G.; Tian, Y. Controllable anisotropic dry adhesion in vacuum: Gecko inspired wedged surface fabricated with ultraprecision diamond cutting. Adv. Funct. Mater. 2017, 27, 1606576.

    Article  CAS  Google Scholar 

  114. Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Y.; Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2, 461–463.

    Article  CAS  Google Scholar 

  115. Murphy, M. P.; Aksak, B.; Sitti, M. Gecko-inspired directional and controllable adhesion. Small 2009, 5, 170–175.

    Article  CAS  Google Scholar 

  116. del Campo, A.; Greiner, C.; Arzt, E. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 2007, 23, 10235–10243.

    Article  CAS  Google Scholar 

  117. del Campo, A.; Greiner, C.; Álvarez, I.; Arzt, E. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Adv. Mater. 2007, 19, 1973–1977.

    Article  CAS  Google Scholar 

  118. Arzt, E.; Gorb, S.; Spolenak, R. From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 2003, 100, 10603–10606.

    Article  CAS  Google Scholar 

  119. Aksak, B.; Murphy M. P.; Sitti, M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir 2007, 23, 3322–3332.

    Article  CAS  Google Scholar 

  120. Gao, H. J.; Wang, X.; Yao, H. M.; Gorb, S.; Arzt, E. Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 2005, 37, 275–285.

    Article  Google Scholar 

  121. Hu, C. C.; Greaney, P. A. Role of seta angle and flexibility in the gecko adhesion mechanism. J. Appl. Phys. 2014, 116, 074302.

    Article  CAS  Google Scholar 

  122. Bhushan, B.; Peressadko, A. G.; Kim, T. W. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for ‘smart adhesion. J. Adhes. Sci. Technol. 2006, 20, 1475–1491.

    Article  CAS  Google Scholar 

  123. Murphy, M. P.; Kim, S.; Sitti, M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl. Mater. Interfaces 2009, 1, 849–855.

    Article  CAS  Google Scholar 

  124. del Campo, A.; Greiner, C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007, 17, R81–R95.

    Article  CAS  Google Scholar 

  125. Röhrig, M.; Thiel, M.; Worgull, M.; Hölscher, H. 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 2012, 8, 3009–3015.

    Article  CAS  Google Scholar 

  126. Tricinci, O.; Eason, E. V.; Filippeschi, C.; Mondini, A.; Mazzolai, B.; Pugno, N. M.; Cutkosky, M. R.; Greco, F.; Mattoli, V. Dry adhesion of artificial gecko setae fabricated via direct laser lithography. In Biomimetic and Biohybrid Systems; Mangan, M.; Cutkosky, M.; Mura, A.; Verschure, P. F. M. J.; Prescott, T.; Lepora, N., Eds.; Springer: Cham, 2017; pp 631–636.

    Chapter  Google Scholar 

  127. Greiner, C.; Arzt, E.; del Campo, A. Hierarchical gecko-like adhesives. Adv. Mater. 2009, 21, 479–482.

    Article  CAS  Google Scholar 

  128. Zhang, E. S.; Liu, Y. Y.; Yu, J. X.; Lv, T.; Li, L. Fabrication of hierarchical gecko-inspired microarrays using a three-dimensional porous nickel oxide template. J. Mater. Chem. B 2015, 3, 6571–6575.

    Article  CAS  Google Scholar 

  129. Jeong, H. E.; Lee, J. K.; Kim, H. N.; Moon, S. H.; Suh, K. Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc. Natl. Acad. Sci. USA 2009, 106, 5639–5644.

    Article  CAS  Google Scholar 

  130. Raut, H. K.; Baji, A.; Hariri, H. H.; Parveen, H.; Soh, G. S.; Low, H. Y.; Wood, K. L. Gecko-inspired dry adhesive based on micro-nanoscale hierarchical arrays for application in climbing devices. ACS Appl. Mater. Interfaces 2018, 10, 1288–1296.

    Article  CAS  Google Scholar 

  131. Lee, H.; Lee, B. P.; Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448, 338–341.

    Article  CAS  Google Scholar 

  132. Ma, Y. F.; Ma, S. H.; Wu, Y.; Pei, X. W.; Gorb, S. N.; Wang, Z. K.; Liu, W. M.; Zhou, F. Remote control over underwater dynamic attachment/detachment and locomotion. Adv. Mater. 2018, 30, 1801595.

    Article  CAS  Google Scholar 

  133. Yoo, B.; Cho, S.; Seo, S.; Lee, J. Elastomeric angled microflaps with reversible adhesion for transfer-printing semiconductor membranes onto dry surfaces. ACS Appl. Mater. Interfaces 2014, 6, 19247–19253.

    Article  CAS  Google Scholar 

  134. Sun, Y. G.; Rogers, J. A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 2004, 4, 1953–1959.

    Article  CAS  Google Scholar 

  135. Mengüç, Y.; Yang, S. Y.; Kim, S.; Rogers, J. A.; Sitti, M. Geckoinspired controllable adhesive structures applied to micromanipulation. Adv. Funct. Mater. 2012, 22, 1246–1254.

    Article  CAS  Google Scholar 

  136. Kim, S.; Carlson, A.; Cheng, H. Y.; Lee, S.; Park, J. K.; Huang, Y. G.; Rogers, J. A. Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing. Appl. Phys. Lett. 2012, 100, 171909.

    Article  CAS  Google Scholar 

  137. Jeong, J.; Kim, J.; Song, K.; Autumn, K.; Lee, J. Geckoprinting: Assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays. J. Roy. Soc. Interface 2014, 11, 20140627.

    Article  Google Scholar 

  138. Tian, H. M.; Liu, H. R.; Shao, J. Y.; Li, S.; Li, X. M.; Chen, X. M. An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko’s adhesive structures and toe muscles. Soft Matter 2020, 16, 5599–5608.

    Article  CAS  Google Scholar 

  139. Li, S.; Tian, H. M.; Shao, J. Y.; Liu, H. R.; Wang, D. R.; Zhang, W. T. Switchable adhesion for nonflat surfaces mimicking geckos’ adhesive structures and toe muscles. ACS Appl. Mater. Interfaces 2020, 12, 39745–39755.

    Article  CAS  Google Scholar 

  140. Li, Q. L. A practical fabrication method of the gecko-inspired easy-removal skin adhesive. Biosurf. Biotribol. 2017, 3, 66–74.

    Article  Google Scholar 

  141. Mahdavi, A.; Ferreira, L.; Sundback, C.; Nichol, J. W.; Chan, E. P.; Carter, D. J. D.; Bettinger, C. J.; Patanavanich, S.; Chignozha, L.; Ben-Joseph, E. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl. Acad. Sci. USA 2008, 105, 2307–2312.

    Article  CAS  Google Scholar 

  142. Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 2017, 29, 1701353.

    Article  CAS  Google Scholar 

  143. Gao, B. B.; Wang, X.; Li, T.; Feng, Z. Q.; Wang, C. Y.; Gu, Z. Z. Gecko-inspired paper artificial skin for intimate skin contact and multisensing. Adv. Mater. Technol. 2019, 4, 1800392.

    Article  CAS  Google Scholar 

  144. Hammond, R. A. The proboscis mechanism of Acanthocephalus Ranae. J. Exp. Biol. 1966, 45, 203–213.

    Article  Google Scholar 

  145. Emde, S.; Rueckert, S.; Palm, H. W.; Klimpel, S. Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the river rhine. PLoS One 2012, 7, e53218.

    Article  CAS  Google Scholar 

  146. Wang, H.; Pastorin, G.; Lee, C. Toward self-powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery. Adv. Sci. 2016, 3, 1500441.

    Article  CAS  Google Scholar 

  147. Lee, S.; Lahiji, S. F.; Jang, J.; Jang, M.; Jung, H. Micro-pillar integrated dissolving microneedles for enhanced transdermal drug delivery. Pharmaceutics 2019, 11, 402.

    Article  CAS  Google Scholar 

  148. Chew, S. W. T.; Shah, A. H.; Zheng, M. J.; Chang, H.; Wiraja, C.; Steele, T. W. J.; Xu, C. J. A self-adhesive microneedle patch with drug loading capability through swelling effect. Bioeng. Transl. Med. 2020, 5, e10157.

    Article  CAS  Google Scholar 

  149. Amer, M.; Chen, R. K. Self-adhesive microneedles with interlocking features for sustained ocular drug delivery. Macromol. Biosci. 2020, 20, 2000089.

    Article  CAS  Google Scholar 

  150. Jeon, E. Y.; Lee, J.; Kim, B. J.; Joo, K. I.; Kim, K. H.; Lim, G.; Cha, H. J. Bio-inspired swellable hydrogel-forming double-layered adhesive microneedle protein patch for regenerative internal/external surgical closure. Biomaterials 2019, 222, 119439.

    Article  CAS  Google Scholar 

  151. Liu, Z. Y.; Wang, X. T.; Qi, D. P.; Qi, D. P.; Xu, C.; Yu, J. C.; Liu, Y. Q.; Jiang, Y.; Liedberg, B.; Chen, X. D. High-adhesion stretchable electrodes based on nanopile interlocking. Adv. Mater. 2017, 29, 1603382.

    Article  CAS  Google Scholar 

  152. Gorb, S. N. Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles (Coleoptera: Tenebrionidae): Design of co-opted fields of microtrichia and cuticle ultrastructure. Int. J. Insect Morphol. Embryol. 1998, 27, 205–225.

    Article  Google Scholar 

  153. Leckband, D.; Israelachvili, J. Intermolecular forces in biology. Quart. Rev. Biophys. 2001, 34, 105–267.

    Article  CAS  Google Scholar 

  154. Rahmawan, Y.; Kang, S. M.; Lee, S. Y.; Suh, K. Y.; Yang, S. Enhanced shear adhesion by mechanical interlocking of dual-scaled elastomeric micropillars with embedded silica particles. Macromol. React. Eng. 2013, 7, 616–623.

    Article  CAS  Google Scholar 

  155. Chen, C. M.; Chiang, C. L.; Lai, C. L.; Xie, T.; Yang, S. Buckling-based strong dry adhesives via interlocking. Adv. Funct. Mater. 2013, 23, 3813–3823.

    Article  CAS  Google Scholar 

  156. Pu, L.; Saraf, R.; Maheshwari, V. Bio-inspired interlocking random 3-D structures for tactile and thermal sensing. Sci. Rep. 2017, 7, 5834.

    Article  CAS  Google Scholar 

  157. Park, J.; Lee, Y.; Hong, J.; Lee, Y.; Ha, M.; Jung, Y.; Lim, H.; Kim, S. Y.; Ko, H. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014, 8, 12020–12029.

    Article  CAS  Google Scholar 

  158. Pang, C.; Lee, G. Y.; Kim, T. L.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

    Article  CAS  Google Scholar 

  159. Cheng, L.; Qian, W.; Wei, L.; Zhang, H. J.; Zhao, T. Y.; Li, M.; Liu, A. P.; Wu, H. P. A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous monitoring of human motions. J. Mater. Chem. C 2020, 8, 11525–11531.

    Article  CAS  Google Scholar 

  160. Baik, S.; Kim, N.; Kim, T. I.; Chae, H.; Kim, K. H.; Pang, C.; Suh, K. Y. Theoretical analysis of flexible strain-gauge sensor with nanofibrillar mechanical interlocking. Curr. Appl. Phys. 2015, 15, 274–278.

    Article  Google Scholar 

  161. Wang, P.; Ju, Y.; Cui, Y. B.; Hosoi, A. Copper/parylene core/shell nanowire surface fastener used for room-temperature electrical bonding. Langmuir 2013, 29, 13909–13916.

    Article  CAS  Google Scholar 

  162. Lee, C.; Kim, S. M.; Kim, Y. J.; Choi, Y. W.; Suh, K, Y.; Pang, C.; Choi, M. Robust microzip fastener: Repeatable interlocking using polymeric rectangular parallelepiped arrays. ACS Appl. Mater. Interfaces 2015, 7, 2561–2568.

    Article  CAS  Google Scholar 

  163. Wang, P.; Ju, Y.; Chen, M. J. Room-temperature electrical bonding technique based on Copper/polystyrene core/Shell nanowire surface fastener. Appl. Surf. Sci. 2015, 349, 774–779.

    Article  CAS  Google Scholar 

  164. Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41, 99–132.

    Article  CAS  Google Scholar 

  165. Zhao, Q.; Lee, D. W.; Ahn, B. K.; Seo, S.; Kaufman, Y.; Israelachvili, J. N.; Waite, J. H. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater. 2016, 15, 407–412.

    Article  CAS  Google Scholar 

  166. Zhao, Y. H.; Wu, Y.; Wang, L.; Zhang, M. M.; Chen, X.; Liu, M. J.; Fan, J.; Liu, J. Q.; Zhou, F.; Wang, Z. K. Bio-inspired reversible underwater adhesive. Nat. Commun. 2017, 8, 2218.

    Article  CAS  Google Scholar 

  167. Kim, K.; Shin, M.; Koh, M. Y.; Ryu, J. H.; Lee, M. S.; Hong, S.; Lee, H. TAPE: A medical adhesive inspired by a ubiquitous compound in plants. Adv. Funct. Mater. 2015, 25, 2402–2410.

    Article  CAS  Google Scholar 

  168. Tramacere, F.; Beccai, L.; Kuba, M.; Gozzi, A.; Bifone, A.; Mazzolai, B. The morphology and adhesion mechanism of Octopus vulgaris suckers. PLoS One 2013, 8, e65074.

    Article  CAS  Google Scholar 

  169. Tramacere, F.; Kovalev, A.; Kleinteich, T.; Gorb, S. N.; Mazzolai, B. Structure and mechanical properties of Octopus vulgaris suckers. J. Roy. Soc. Interface 2014, 11, 20130816.

    Article  Google Scholar 

  170. Kim, D. W.; Baik, S.; Min, H.; Chun, S.; Lee, H. J.; Kim, K. H.; Lee, J. Y.; Pang, C. Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion. Adv. Funct. Mater. 2019, 29, 1807614.

    Article  CAS  Google Scholar 

  171. Lee, H.; Um, D. S.; Lee, Y.; Lim, S.; Kim, H. J.; Ko. H. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv. Mater. 2016, 28, 7457–7465.

    Article  CAS  Google Scholar 

  172. Baik, S.; Lee, H. J.; Kim, D. W.; Min, H.; Pang, C. Capillarity-enhanced organ-attachable adhesive with highly drainable wrinkled octopus-inspired architectures. ACS Appl. Mater. Interfaces 2019, 11, 25674–25681.

    Article  CAS  Google Scholar 

  173. Chung, H. U.; Kim, B. H.; Lee, J. Y.; Lee, J.; Xie, Z. Q.; Ibler, E. M.; Lee, K. H.; Banks, A.; Jeong, J. Y.; Kim, J. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019, 363, eaau0780.

    Article  CAS  Google Scholar 

  174. Junghähnel, M.; Garner, S. Glass meets flexibility: Challenges in manufacturing of thin films on flexible glass. Vak. Forsch. Prax. 2014, 26, 35–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. 2018R1A2B2005067) and GIST Research Institute (GRI) grant funded by the GIST in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Cho Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, J.I., Kim, S.H. & Ko, H.C. Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Res. 14, 3143–3158 (2021). https://doi.org/10.1007/s12274-021-3533-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3533-6

Keywords

Navigation