Skip to main content
Log in

Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions. However, this strategy has proven less effective for Cu-based electrocatalysts for the reduction of CO2 to multicarbon (C2+) products, owing to the overly strong binding of intermediates on small-sized (< 15 nm) Cu nanoparticles (NPs). Herein, by incorporating pyrenyl-graphdiyne (Pyr-GDY), we successfully endowed ultrafine (∼ 2 nm) Cu NPs with a significantly elevated selectivity for CO2-to-C2+ conversion. The Pyr-GDY can not only help to relax the overly strong binding between adsorbed H* and CO* intermediates on Cu NPs by tailoring the d-band center of the catalyst, but also stabilize the ultrafine Cu NPs through the high affinity between alkyne moieties and Cu NPs. The resulting Pyr-GDY-Cu composite catalyst gave a Faradic efficiency (FE) for C2+ products up to 74%, significantly higher than those of support-free Cu NPs (C2+ FE, ~ 2%), carbon nanotube-supported Cu NPs (CNT-Cu, C2+ FE, ~ 18%), graphene oxide-supported Cu NPs (GO-Cu, C2+ FE, ~ 8%), and other reported ultrafine Cu NPs. Our results demonstrate the critical influence of graphdiyne on the selectivity of Cu-catalyzed CO2 electroreduction, and showcase the prospect for ultrafine Cu NPs catalysts to convert CO2 into value-added C2+ products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

    Article  CAS  Google Scholar 

  2. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  Google Scholar 

  3. Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

    Article  CAS  Google Scholar 

  4. Liu, D. C.; Zhong, D. C.; Lu, T. B. Non-noble metal-based molecular complexes for CO2 reduction: From the ligand design perspective. EnergyChem 2020, 2, 100034.

    Article  Google Scholar 

  5. Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

    Article  CAS  Google Scholar 

  6. Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

    Article  CAS  Google Scholar 

  7. Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

    Article  CAS  Google Scholar 

  8. Zhong, H. X.; Meng, F. L.; Zhang, Q.; Liu, K. H.; Zhang, X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318–2323.

    Article  CAS  Google Scholar 

  9. Tan, S.; Tackett, B. M.; He, Q.; Lee, J. H.; Chen, J. G.; Wong, S. S. Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W2N3). Nano Res. 2020, 13, 1434–1443.

    Article  CAS  Google Scholar 

  10. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  11. Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res. 2019, 12, 2324–2329.

    Article  CAS  Google Scholar 

  12. Jeon, H. S.; Kunze, S.; Scholten, F.; Cuenya, B. R. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 2018, 8, 531–535.

    Article  CAS  Google Scholar 

  13. Reller, C.; Krause, R.; Volkova, E.; Schmid, B.; Neubauer, S.; Rucki, A.; Schuster, M.; Schmid, G. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 2017, 7, 1602114.

    Article  Google Scholar 

  14. Choi, C.; Cheng, T.; Espinosa, M. F.; Fei, H. L.; Duan, X. F.; Goddard III, W. A.; Huang, Y. A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials. Adv. Mater. 2019, 31, 1805405.

    Article  Google Scholar 

  15. Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

    Article  CAS  Google Scholar 

  16. Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

    Article  Google Scholar 

  17. Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nerskov, J. K.; Chan, K.; Wang, H. T. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111–119.

    Article  CAS  Google Scholar 

  18. Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624–4633.

    Article  CAS  Google Scholar 

  19. Choi, C.; Kwon, S.; Cheng, T.; Xu, M. J.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X. Q.; Duan, X. F. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812.

    Article  CAS  Google Scholar 

  20. Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017, 7, 1749–1756.

    Article  CAS  Google Scholar 

  21. Han, J. Y.; Long, C.; Zhang, J.; Hou, K.; Yuan, Y.; Wang, D. W.; Zhang, X. F.; Qiu, X. Y.; Zhu, Y. F.; Zhang, Y. et al. A reconstructed porous copper surface promotes selectivity and efficiency toward C2 products by electrocatalytic CO2 reduction. Chem. Sci. 2020, 11, 10698–10704.

    Article  CAS  Google Scholar 

  22. Zhuang, T. T.; Pang, Y. J.; Liang, Z. Q.; Wang, Z. Y.; Li, Y.; Tan, C. S.; Li, J.; Dinh, C. T.; De Luna, P.; Hsieh, P. L. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 2018, 1, 946–951.

    Article  CAS  Google Scholar 

  23. Luc, W.; Fu, X. B.; Shi, J. J.; Lv, J. J.; Jouny, M.; Ko, B. H.; Xu, Y. B.; Tu, Q.; Hu, X. B.; Wu, J. S. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2019, 2, 423–430.

    Article  CAS  Google Scholar 

  24. Reske, R.; Mistry, H.; Behafarid, F.; Cuenya, B. R.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

    Article  CAS  Google Scholar 

  25. Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

    Article  CAS  Google Scholar 

  26. Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated Cu catalysis at an abrupt interface. Science 2018, 360, 783–787.

    Article  CAS  Google Scholar 

  27. Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2016, 55, 5789–5792.

    Article  CAS  Google Scholar 

  28. Tang, Q.; Lee, Y.; Li, D. Y.; Choi, W.; Liu, C. W.; Lee, D.; Jiang, D. E. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 2017, 139, 9728–9736.

    Article  CAS  Google Scholar 

  29. Hu, Q.; Han, Z.; Wang, X. D.; Li, G. M.; Wang, Z. Y.; Huang, X. W.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew. Chem., Int. Ed. 2020, 59, 19054–19059.

    Article  CAS  Google Scholar 

  30. Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 2014, 136, 13319–13325.

    Article  CAS  Google Scholar 

  31. Rong, W. F.; Zou, H. Y.; Zang, W. J.; Xi, S. B.; Wei, S. T.; Long, B. H.; Hu, J. H.; Ji, Y. F.; Duan, L. L. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 133, 470–476.

    Article  Google Scholar 

  32. Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

    Article  CAS  Google Scholar 

  33. Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

    Article  CAS  Google Scholar 

  34. Yang, L. L.; Wang, H. J.; Wang, J.; Li, Y.; Zhang, W.; Lu, T. B. A Graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity. J. Mater. Chem. A 2019, 7, 13142–13148.

    Article  CAS  Google Scholar 

  35. Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.

    Article  CAS  Google Scholar 

  36. Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

    Article  CAS  Google Scholar 

  37. Prieto, G.; Zečević, J.; Friedrich, H.; De Jong, K. P.; De Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 2013, 12, 34–39.

    Article  CAS  Google Scholar 

  38. Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771–773.

    Article  CAS  Google Scholar 

  39. Zhang, T.; Du, Y. H.; Müller, F.; Amin, I.; Jordan, R. Surface-initiated Cu(0) mediated controlled radical polymerization (SI-CuCRP) using a copper plate. Polym. Chem. 2015, 6, 2726–2733.

    Article  CAS  Google Scholar 

  40. Zhang, T.; Hou, Y.; Dzhagan, V.; Liao, Z. Q.; Chai, G. L.; Löffler, M.; Olianas, D.; Milani, A.; Xu, S. Q.; Tommasini, M. et al. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nat. Commun. 2018, 9, 1140.

    Article  Google Scholar 

  41. Li, M.; Wang, H. J.; Zhang, C.; Chang, Y. B.; Li, S. J.; Zhang, W.; Lu, T. B. Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst. Sci. China Chem. 2020, 63, 1040–1045.

    Article  CAS  Google Scholar 

  42. Chen, L.; Chen, J. M.; Zhou, H. D.; Pi, J. Preparation of nano copper colloid and its characterization. J. Mater. Sci. Eng. 2005, 23, 598–600.

    Google Scholar 

  43. Li, Y. N.; Wang, J. L.; He, L. N. Copper(II) chloride-catalyzed glaser oxidative coupling reaction in polyethylene glycol. Tetrahedron Lett. 2011, 52, 3485–3488.

    Article  CAS  Google Scholar 

  44. Siemsen, P.; Livingston, R. C.; Diederich, F. Acetylenic coupling: A powerful tool in molecular construction. Angew. Chem., Int. Ed. 2000, 39, 2632–2657.

    Article  CAS  Google Scholar 

  45. Liu, R.; Zhou, J. Y.; Gao, X.; Li, J. Q.; Xie, Z. Q.; Li, Z. Z.; Zhang, S. Q.; Tong, L. M.; Zhang, J.; Liu, Z. F. Graphdiyne filter for decontaminating lead-ion-polluted water. Adv. Electron. Mater. 2017, 3, 1700122.

    Article  Google Scholar 

  46. Ihm, K.; Kang, T. H.; Lee, D. H.; Park, S. Y.; Kim, K. J.; Kim, B.; Yang, J. H.; Park, C. Y. Oxygen contaminants affecting on the electronic structures of the carbon nano tubes grown by rapid thermal chemical vapor deposition. Surf. Sci. 2006, 600, 3729–3733.

    Article  CAS  Google Scholar 

  47. Estrade-Szwarckopf, H. XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak. Carbon 2004, 42, 1713–1721.

    Article  CAS  Google Scholar 

  48. Li, J. Q.; Xie, Z. Q.; Xiong, Y.; Li, Z. Z.; Huang, Q. X.; Zhang, S. Q.; Zhou, J. Y.; Liu, R.; Gao, X.; Chen, C. G. et al. Architecture of β-graphdiyne-containing thin film using modified glaser-hay coupling reaction for enhanced photocatalytic property of TiO2. Adv. Mater. 2017, 29, 1700421.

    Article  Google Scholar 

  49. Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596–7599.

    Article  CAS  Google Scholar 

  50. Lei, Q.; Zhu, H.; Song, K. P.; Wei, N. N.; Liu, L. M.; Zhang, D. L.; Yin, J.; Dong, X. L.; Yao, K. X.; Wang, N. et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 4213–4222.

    Article  CAS  Google Scholar 

  51. Zeng, L. Z.; Wang, Z. Y.; Wang, Y. K.; Wang, J.; Guo, Y.; Hu, H. H.; He, X. F.; Wang, C.; Lin, W. B. Photoactivation of Cu centers in metal-organic frameworks for selective CO2 conversion to ethanol. J. Am. Chem. Soc. 2020, 142, 75–79.

    Article  CAS  Google Scholar 

  52. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

    Article  CAS  Google Scholar 

  53. Baturina, O. A.; Lu, Q.; Padilla, M. A.; Xin, L.; Li, W. Z.; Serov, A.; Artyushkova, K.; Atanassov, P.; Xu, F.; Epshteyn, A. et al. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal. 2014, 4, 3682–3695.

    Article  CAS  Google Scholar 

  54. Ren, D.; Wong, N. T.; Handoko, A. D.; Huang, Y.; Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 2016, 7, 20–24.

    Article  CAS  Google Scholar 

  55. Lin, R.; Ma, X.; Cheong, W.-C.; Zhang, C.; Zhu, W.; Pei, J.; Zhang, K.; Wang, B.; Liang, S.; Liu, Y.; et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866–2871.

    Article  CAS  Google Scholar 

  56. Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc. Natl. Acad. Sci. USA 2017, 114, 10560–10565.

    Article  CAS  Google Scholar 

  57. Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to Be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

    Article  CAS  Google Scholar 

  58. Su, K.; Dong, G. X.; Zhang, W.; Liu, Z. L.; Zhang, M.; Lu, T. B. In situ coating CsPbBr3 nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 50464–50471.

    Article  CAS  Google Scholar 

  59. Cao, S. W.; Wang, Y. J.; Zhu, B. C.; Xie, G. C.; Yu, J. G.; Gong, J. R. Enhanced photochemical CO2 reduction in the gas phase by graphdiyne. J. Mater. Chem. A 2020, 8, 7671–7676.

    Article  CAS  Google Scholar 

  60. Jiang, S.; Klingan, K.; Pasquini, C.; Dau, H. New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. J. Chem. Phys. 2019, 150, 041718.

    Article  Google Scholar 

  61. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    Article  CAS  Google Scholar 

  62. Nie, X. W.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem., Int. Ed. 2013, 52, 2459–2462.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21702146, 21805207, 21790052, and 21931007), the National Key Technology R&D Program of China (No. 2017YFA0700104), 111 Project of China (No. D17003), and the Natural Science Foundation of Tianjin (No. 19JCQNJC05500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Zhang or Tong-Bu Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YB., Zhang, C., Lu, XL. et al. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 15, 195–201 (2022). https://doi.org/10.1007/s12274-021-3456-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3456-2

Keywords

Navigation