Skip to main content
Log in

Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) battery has attracted intensive attention in the realm of energy storage owing to its high theoretical capacity and energy density. However, the shuttle effect of soluble lithium polysulfides (LiPSs) between electrodes results in rapid capacity degradation. Herein, a strategy which combines the design of both chemical interaction and microstructure of interlayer was proposed to suppress the shuttle effect. The chemical interaction between different functionalized MOFs and LiPSs was systematically studied to find the best candidate. Furthermore, an interlayer with ordered structure was constructed via the layer-by-layer assembly of metal-organic frameworks (MOFs) on graphene (UiO-66-NH2@graphene) to create sinuous channels which can better impede the diffusion process of LiPSs by the strong adsorption of MOF toward LiPSs. Consequently, in comparison to the battery with a bare separator, the ordered interlayer increased the initial discharge capacity of battery by 28.98% at 1.0 C and lowered the capacity decay rate remarkably from 0.10% to 0.067% per cycle, indicating that the design of chemical interaction and microstructure paves the way for high-performance Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

    Article  CAS  Google Scholar 

  2. Fan, L.; Chen, S. H.; Zhu, J. Y.; Ma, R. F.; Li, S. P.; Podila, R.; Rao, A. M.; Yang, G. Z.; Wang, C. X.; Liu, Q. et al. Simultaneous suppression of the dendrite formation and shuttle effect in a lithium-sulfur battery by bilateral solid electrolyte interface. Adv. Sci. 2018, 5, 1700934.

    Article  Google Scholar 

  3. Kong, L.; Li, B. Q.; Peng, H. J.; Zhang, R.; Xie, J.; Huang, J. Q.; Zhang, Q. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800849.

    Article  Google Scholar 

  4. Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D.; Xia, L. X.; Mai, L. Q. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.

    Article  Google Scholar 

  5. Wang, W. P.; Zhang, J.; Chou, J.; Yin, Y. X.; You, Y.; Xin, S.; Guo, Y. G. Solidifying cathode-electrolyte interface for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2000791.

    Article  CAS  Google Scholar 

  6. Zhang, B.; Luo, C.; Deng, Y. Q.; Huang, Z. J.; Zhou, G. M.; Lv, W.; He, Y. B.; Wan, Y.; Kang, F. Y.; Yang, Q. H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000091.

    Article  CAS  Google Scholar 

  7. Luo, C.; Liang, X.; Sun, Y. F.; Lv, W.; Sun, Y. W.; Lu, Z. Y.; Hua, W. X.; Yang, H. T.; Wang, R. C.; Yan, C. L. et al. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Mater. 2020, 33, 290–297.

    Article  Google Scholar 

  8. He, D. Q.; Meng, J. T.; Chen, X. Y.; Liao, Y. Q.; Cheng, Z. X.; Yuan, L. X.; Li, Z.; Huang, Y. H. Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2001201.

    Article  CAS  Google Scholar 

  9. Wang, W. P.; Zhang, J.; Chou, J.; Yin, Y. X.; You, Y.; Xin, S.; and Guo, Y. G. Solidifying cathode-electrolyte interface for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2000791.

    Article  CAS  Google Scholar 

  10. Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M.; Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049–1075.

    Article  CAS  Google Scholar 

  11. Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.

    Article  CAS  Google Scholar 

  12. Wang, Z. Q.; Huang, W. Y.; Hua, J. C.; Wang, Y. D.; Yi, H. C.; Zhao, W. G.; Zhao, Q. H.; Jia, H.; Fei, B.; Pan, F. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small Methods 2020, 4, 2000082.

    Article  CAS  Google Scholar 

  13. Xiao, Z. B.; Yang, Z.; Nie, H. G.; Lu, Y. Q.; Yang, K. Q.; Huang, S. M. Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 8683–8689.

    Article  CAS  Google Scholar 

  14. Guo, D. Y.; Chen, X. A.; Wei, H. F.; Liu, M. L.; Ding, F.; Yang, Z.; Yang, K. Q.; Wang, S.; Xu, X. J.; Huang, S. M. Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 6245–6256.

    Article  CAS  Google Scholar 

  15. Guo, D.; Wei, H.; Chen, X.; Liu, M.; Ding, F.; Yang, Z.; Yang, Y.; Wang, S.; Yang, K.; Huang, S. M. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 18193–18206.

    Article  CAS  Google Scholar 

  16. Wang, L.; Yang, Z.; Nie, H. G.; Gu, C. C.; Hua, W. X.; Xu, X. J.; Chen, X. A.; Chen, Y.; Huang, S. M. A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, long-life lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 15343–15352.

    Article  CAS  Google Scholar 

  17. Fan, Y.; Yang, Z.; Hua, W. X.; Liu, D.; Tao, T.; Rahman, M. M.; Lei, W. W.; Huang, S. M.; Chen, Y. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602380.

    Article  Google Scholar 

  18. Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. Lithium-sulfur batteries: A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2890.

    Article  Google Scholar 

  19. Hua, W. X.; Yang, Z.; Nie, H. G.; Li, Z. Y.; Yang, J. Z.; Guo, Z. Q.; Ruan, C. P.; Chen, X. A.; Huang, S. M. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano 2017, 11, 2209–2218.

    Article  CAS  Google Scholar 

  20. Ding, X. W.; Yang, S.; Zhou, S. Y.; Zhan, Y. X.; Lai, Y. C.; Zhou, X. M.; Xu, X. J.; Nie, H. G.; Huang, S. M.; Yang, Z. Biomimetic molecule catalysts to promote the conversion of polysulfides for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2003354.

    Article  CAS  Google Scholar 

  21. Zhou, S. Y.; Yang, S.; Ding, X. W.; Lai, Y. C.; Nie, H. G.; Zhang, Y. G.; Chan, D.; Duan, H.; Huang, S. M.; Yang, Z. Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium-sulfur batteries. ACS Nano 2020, 14, 7538–7551.

    Article  CAS  Google Scholar 

  22. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Article  Google Scholar 

  23. Hao, Z. X.; Yuan, L. X.; Chen, C. J.; Xiang, J. W.; Li, Y. Y.; Huang, Z. M.; Hu, P.; Huang, Y. H. TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 17711–17717.

    Article  CAS  Google Scholar 

  24. Song, H. W.; Shen, L. S.; Wang, J.; Wang, C. X. Phase segregation and self-nano-crystallization induced high performance Li-storage in metal-organic framework bulks for advanced lithium ion batteries. Nano Energy 2017, 34, 47–57.

    Article  CAS  Google Scholar 

  25. Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103–1107.

    Article  CAS  Google Scholar 

  26. Wang, S. J.; Xhaferaj, N.; Wahiduzzaman, M.; Oyekan, K.; Li, X.; Wei, K.; Zheng, B.; Tissot, A.; Marrot, J.; Shepard, W. et al. Engineering structural dynamics of zirconium metal-organic frameworks based on natural C4 linkers. J. Am. Chem. Soc. 2019, 141, 17207–17216.

    Article  CAS  Google Scholar 

  27. Chang, G. G.; Ma, X. C.; Zhang, Y. X.; Wang, L. Y.; Tian, G.; Liu, J. W.; Wu, J.; Hu, Z. Y.; Yang, X. Y.; Chen, B. L. Construction of hierarchical metal-organic frameworks by competitive coordination strategy for highly efficient CO2 conversion. Adv. Mater. 2019, 31, 1904969.

    Article  CAS  Google Scholar 

  28. Li, D. X.; Wang, J.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Gan, L. Y.; Zhang, Q.; Huang, S. M. Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery. Adv. Funct. Mater. 2020, 30, 2003945.

    Article  CAS  Google Scholar 

  29. Zhang, Q.; Liu, B. M.; Wang, J.; Li, Q. F.; Li, D. X.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Zheng, M. Y. et al. The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett. 2020, 5, 2919–2926.

    Article  CAS  Google Scholar 

  30. Li, M. L.; Wan, Y.; Huang, J. K.; Assen, A. H.; Hsiung, C. E.; Jiang, H.; Han, Y.; Eddaoudi, M.; Lai, Z. P.; Ming, J. et al. Metal-organic framework-based separators for enhancing Li-S battery stability: Mechanism of mitigating polysulfide diffusion. ACS Energy Lett. 2017, 2, 2362–2367.

    Article  CAS  Google Scholar 

  31. Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110–19117.

    Article  CAS  Google Scholar 

  32. Zhang, W. J.; Huang, H. L.; Zhong, C. L.; Liu, D. H. Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks: A combined experimental and molecular simulation study. Phys. Chem. Chem. Phys. 2012, 14, 2317–2325.

    Article  CAS  Google Scholar 

  33. Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49, 9449–9451.

    Article  CAS  Google Scholar 

  34. Zhang, Q.; Li, D. X.; Wang, J.; Guo, S. J.; Zhang, W.; Chen, D.; Li, Q.; Rui, X. H.; Gan, L. Y.; Huang, S. M. Multiscale optimization of Li-ion diffusion in solid lithium metal batteries via ion conductive metal-organic frameworks. Nanoscale 2020, 12, 6976–6982.

    Article  CAS  Google Scholar 

  35. Chang, C. H.; Chung, S. H.; Han, P.; Manthiram, A. Oligoanilines as a suppressor of polysulfide shuttling in lithium-sulfur batteries. Mater. Horiz. 2017, 4, 908–914.

    Article  CAS  Google Scholar 

  36. Hong, X. H.; Jin, J.; Wu, T.; Lu, Y.; Zhang, S. P.; Chen, C. H.; Wen, Z. Y. A rGO-CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries. J. Mater. Chem. A 2017, 5, 14775–14782.

    Article  CAS  Google Scholar 

  37. Seh, Z. W.; Wang, H. T.; Hsu, P. C.; Zhang, Q. F.; Li, W. Y.; Zheng, G. Y.; Yao, H. B.; Cui, Y. Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ. Sci. 2014, 7, 672–676.

    Article  CAS  Google Scholar 

  38. Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X. Y.; Perman, J. A.; Ma, S. Q. A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 2017, 5, 8385–8393.

    Article  CAS  Google Scholar 

  39. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

    Article  Google Scholar 

  40. Sun, J.; Sun, Y. M.; Pasta, M.; Zhou, G. M.; Li, Y. Z.; Liu, W.; Xiong, F.; Cui, Y. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv. Mater. 2016, 28, 9797–9803.

    Article  CAS  Google Scholar 

  41. Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Wu, C. Y.; Yan, Y. C.; He, W. D. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091–2104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 51920105004 and 51902060), the Foundation for Young Talents in Higher Education of Guangdong, China (No. 2018KQNCX065) and National Natural Science Foundation of Guangdong, China (No. 2019A1515010842).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Zhang or Shaoming Huang.

Electronic Supplementary Material

12274_2021_3372_MOESM1_ESM.pdf

Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Xiao, Y., Wang, J. et al. Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries. Nano Res. 14, 4556–4562 (2021). https://doi.org/10.1007/s12274-021-3372-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3372-5

Keywords

Navigation