Skip to main content
Log in

Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As the growing criterion of electromagnetic wave (EMW) absorption materials, micro/nano-scale magnetic materials are drawing more and more attention for their unique features compared to bulky absorbers. Generally, the complex permeability of micro/nano-scale magnetic absorbers varies in a relatively narrow range, whatever for the storage of magnetic energy or the dissipation of magnetic energy. If so, how the small variation of permeability affects the ultimate performances is still unclear. Here, a strategy of electromagnetic parameters regulation for the magnetic materials is applied to understand the loss contribution in micro/nanoscale magnetic absorbers. After analyzing the evolution of electromagnetic maps of ten ferrosoferric oxide samples, it can be found that the dissipation contribution of permeability for magnetic materials is weaker than that of permittivity, in spite of its significant role in determining the impedance matching characteristics. In summary, this work systematically explores the loss contribution in micro/nano-magnetic absorbers for the first time, which is of great importance in designing and optimizing the microwave absorption properties of magnetic absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable highperformance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

    Article  CAS  Google Scholar 

  2. Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. in press, DOI: https://doi.org/10.1007/s12274-020-3208-8.

  3. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    Article  CAS  Google Scholar 

  4. Shu, J. C.; Cao, M. S.; Zhang, M.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Cao, M. Q. Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 2020, 30, 1908299.

    Article  CAS  Google Scholar 

  5. Zhao, B.; Li, Y.; Zeng, Q. W.; Wang, L.; Ding, J. J.; Zhang, R.; Che, R. C. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16, 2003502.

    Article  CAS  Google Scholar 

  6. Xu, J.; Zhang, X.; Yuan, H. R.; Zhang, S.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 2020, 159, 357–365.

    Article  CAS  Google Scholar 

  7. Yan, F.; Guo, D.; Zhang, S.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. An ultra-small NiFe2O4 hollow particle/graphene hybrid: Fabrication and electromagnetic wave absorption property. Nanoscale 2018, 10, 2697–2703.

    Article  CAS  Google Scholar 

  8. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  CAS  Google Scholar 

  9. Yang, W. Y.; Zhang, Y. F.; Qiao, G. Y.; Lai, Y. F.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Zhang, Y.; Yang, Y. C. et al. Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17−xSix and their composites. Acta Mater. 2018, 145, 331–336.

    Article  CAS  Google Scholar 

  10. Qu, B.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Coupling hollow Fe3O4-Fe Nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2016, 8, 3730–3735.

    Article  CAS  Google Scholar 

  11. Chang, Y. D.; Zhang, Y. N.; Meng, C.; Liu, S. Q.; Chang, H.; Liu, Z. Strong and wide microwave absorption of SrFe12−2xNixRuxO19 enhanced by dislocation stripes. Appl. Phys. Lett. 2020, 116, 082404.

    Article  CAS  Google Scholar 

  12. Liang, X. H.; Man, Z. M.; Quan, B.; Zheng, J.; Gu, W. H.; Zhang, Z.; Ji, G. B. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 2020, 12, 102.

    Article  CAS  Google Scholar 

  13. Wang, X. Y.; Lu, Y. K.; Zhu, T.; Chang, S. C.; Wang, W. CoFe2O4/ N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 2020, 388, 124317.

    Article  CAS  Google Scholar 

  14. Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@Ppy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

    Article  Google Scholar 

  15. Wu, H. J.; Liu, J. L.; Liang, H. S.; Zang, D. Y. Sandwich-like Fe3O4/ Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 2020, 393, 24743.

    Google Scholar 

  16. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  17. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  18. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  19. Perdew, J. P.; Burke, K.; Ernzerhof, K. M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  20. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  CAS  Google Scholar 

  21. Yang, T.; Wen, X. D.; Huo, C. F.; Li, Y. W.; Wang, J. G.; Jiao, H. J. Structure and energetics of hydrogen adsorption on Fe3O4(1 1 1). J. Mol. Catal. A: Chem. 2009, 302, 129–136.

    Article  CAS  Google Scholar 

  22. Lou, Z. C.; Li, R.; Wang, P.; Zhang, Y.; Chen, B.; Huang, C. X.; Wang, C. C.; Han, H.; Li, Y. J. Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior. Chem. Eng. J. 2020, 391, 123571.

    Article  CAS  Google Scholar 

  23. Chen, Y. M.; Pang, L.; Li, Y.; Luo, H.; Duan, G. G.; Mei, C. T.; Xu, W. H.; Zhou, W.; Liu, K. M.; Jiang, S. H. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Composites Part A 2020, 135, 105960.

    Article  CAS  Google Scholar 

  24. Liu, Q. L.; Zhang, D.; Fan, T. X. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 2008, 93, 013110.

    Article  Google Scholar 

  25. Lu, B.; Huang, H.; Dong, X. L.; Zhang, X. F.; Lei, J. P.; Sun, J. P.; Dong, C. Influence of alloy components on electromagnetic characteristics of core/shell-type Fe-Ni nanoparticles. J. Appl. Phys. 2008, 104, 114313.

    Article  Google Scholar 

  26. Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932–12942.

    Article  CAS  Google Scholar 

  27. Quan, B.; Liang, X. H.; Ji, G. B.; Lv, J.; Dai, S. S.; Xu, G. Y.; Du, Y. W. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 2018, 129, 310–320.

    Article  CAS  Google Scholar 

  28. Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. C. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.

    Article  Google Scholar 

  29. Li, X. K.; Paier, J. Adsorption of water on the Fe3O4(111) surface: Structures, stabilities, and vibrational properties studied by density functional theory. J. Phys. Chem. C 2016, 120, 1056–1065.

    Article  CAS  Google Scholar 

  30. Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

    Article  CAS  Google Scholar 

  31. Quan, B.; Liang, X. H.; Zhang, X.; Xu, G. Y.; Ji, G. B.; Du, Y. W. Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl. Mater. Interfaces 2018, 10, 41535–41543.

    Article  CAS  Google Scholar 

  32. Zhao, Z. H.; Zhou, X. J.; Kou, K. C.; Wu, H. J. PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber. Carbon 2021, 173, 80–90.

    Article  CAS  Google Scholar 

  33. Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51402154), the Natural Science Foundation of Jiangsu Province (No. BK20180091), the Startup Foundation for Introducing Talent of NUIST, and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Quan or Guangbin Ji.

Electronic Supplementary Material

12274_2021_3327_MOESM1_ESM.pdf

Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Qiao, M., Lu, X. et al. Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 14, 4006–4013 (2021). https://doi.org/10.1007/s12274-021-3327-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3327-x

Keywords

Navigation