Skip to main content
Log in

Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nontrivial topological behaviors in superconducting materials provide resourceful ground for the emergence and study of unconventional quantum states. Charge doping by the controlled intercalation of donor atoms is an efficient route for enhancing/inducement of superconducting and topological behaviors in layered topological insulators and semimetals. Herein, we enhanced the superconducting temperature of TaSe2 by 20-folds (∼ 3 K) through Sn atoms intercalation. Using first-principles calculations, we demonstrated the existence of nontrivial topological features. Sn0.5TaSe2 displays topological nodal lines around the K high symmetry point in the Brillouin zone, with drumhead-like shaped surface states protected by inversion symmetry. Altogether, the coexistence of these properties makes Sn0.5TaSe2 a potential candidate for topological superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schnyder, A. P.; Ryu, S.; Furusaki, A.; Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 2008, 78, 195125.

    Article  CAS  Google Scholar 

  2. Hasan, M. Z.; Xu, S. Y.; Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: Discoveries, perspectives and outlooks. Phys. Scr. 2015, 2015, 014001.

    Article  CAS  Google Scholar 

  3. Sato, M.; Ando, Y. Topological superconductors: A review. Rep. Prog. Phys. 2017, 80, 076501.

    Article  CAS  Google Scholar 

  4. Zheng, H.; Li, Y. Y.; Jia, J. F. Topological insulator thin films and artificial topological superconductors. In Advanced Topological Insulators. Luo, H. X., Ed.; Wiley-Scrivener: Hoboken, 2019; pp 71–107.

    Chapter  Google Scholar 

  5. Nakamura, Y.; Yanase, Y. Odd-parity superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. B 2017, 96, 054501.

    Article  Google Scholar 

  6. Eschrig, M.; Iniotakis, C.; Tanaka, Y. Properties of interfaces and surfaces in non-centrosymmetric superconductors. In Non-Centrosymmetric Superconductors. Bauer E.; Sigrist M., Eds.; Springer: Berlin, Heidelberg, 2012.

    Google Scholar 

  7. Qi, X. L.; Hughes, T. L.; Zhang, S. C. Topological invariants for the Fermi surface of a time-reversal-invariant superconductor. Phys. Rev. B 2010, 81, 134508.

    Article  CAS  Google Scholar 

  8. Sato, M. Topological odd-parity superconductors. Phys. Rev. B 2010, 81, 220504.

    Article  CAS  Google Scholar 

  9. Ono, S.; Yanase, Y.; Watanabe, H. Symmetry indicators for topological superconductors. Phys. Rev. Res. 2019, 1, 013012.

    Article  CAS  Google Scholar 

  10. Skurativska, A.; Neupert, T.; Fischer, M. H. Atomic limit and inversion-symmetry indicators for topological superconductors. Phys. Rev. Res. 2020, 2, 013064.

    Article  CAS  Google Scholar 

  11. Fu, L.; Berg, E. Odd-parity topological superconductors: Theory and application to CuxBi2Se3. Phys. Rev. Lett. 2010, 105, 097001

    Article  CAS  Google Scholar 

  12. Casas, O. E.; Arrachea, L.; Herrera, W. J.; Yeyati, A. L. Proximity induced time-reversal topological superconductivity in Bi2Se3 films without phase tuning. Phys. Rev. B 2019, 99, 161301.

    Article  CAS  Google Scholar 

  13. Trang, C. X.; Shimamura, N.; Nakayama, K.; Souma, S.; Sugawara, K.; Watanabe, I.; Yamauchi, K.; Oguchi, T.; Segawa, K.; Takahashi, T. et al. Conversion of a conventional superconductor into a topological superconductor by topological proximity effect. Nat. Commun. 2020, 11, 159.

    Article  CAS  Google Scholar 

  14. Moriya, R.; Yabuki, N.; Machida, T. Superconducting proximity effect in a NbSe2/graphene van der Waals junction. Phys. Rev. B 2020, 101, 054503.

    Article  CAS  Google Scholar 

  15. Shen, J. Y.; He, W. Y.; Yuan, N. F. Q.; Huang, Z. L.; Cho, C. W.; Lee, S. H.; Hor, Y. S.; Law, K. T.; Lortz, R. Nematic topological superconducting phase in Nb-doped Bi2Se3. Npj Quantum Mater. 2017, 2, 59.

    Article  CAS  Google Scholar 

  16. Kriener, M.; Segawa, K.; Ren, Z.; Sasaki, S.; Ando, Y. Bulk superconducting phase with a full energy gap in the doped topological insulator CuxBi2Se3. Phys. Rev. Lett. 2011, 106, 127004.

    Article  CAS  Google Scholar 

  17. Volosheniuk, S. O.; Selivanov, Y. G.; Bryzgalov, M. A.; Martovitskii, V. P.; Kuntsevich, A. Y. Effect of Sr doping on structure, morphology, and transport properties of Bi2Se3 epitaxial thin films. J. Appl. Phys. 2019, 125, 095103.

    Article  CAS  Google Scholar 

  18. Jat, K. S.; Neha, P.; Bhardwaj, A.; Patnaik, S. Superconductivity by Nb intercalation in the layered topological insulator Bi2Se3. AIP Conf. Proc. 2019, 2115, 030510.

    Article  CAS  Google Scholar 

  19. Maurya, S. V. K.; Srivastava, P.; Patnaik, S. Emergence of superconductivity in topological insulator Bi2Se3 by Sr intercalation. AIP Conf. Proc. 2016, 1731, 130046.

    Article  Google Scholar 

  20. Liu, Z. H.; Yao, X.; Shao, J. F.; Zuo, M.; Pi, L.; Tan, S.; Zhang, C. J.; Zhang, Y. H. Superconductivity with topological surface state in SrxBi2Se3. J. Am. Chem. Soc. 2015, 137, 10512–10515.

    Article  CAS  Google Scholar 

  21. Hor, Y. S.; Williams, A. J.; Checkelsky, J. G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H. W.; Yazdani, A.; Ong, N. P.; Cava, R. J. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 2010, 104, 057001.

    Article  CAS  Google Scholar 

  22. Kumaravadivel, P.; Pan, G. A.; Zhou, Y.; Xie, Y. J.; Liu, P. Z.; Cha, J. J. Synthesis and superconductivity of In-doped SnTe nanostructures. APL Mater. 2017, 5, 076110.

    Article  CAS  Google Scholar 

  23. Shen, J.; Xie, Y. J.; Cha, J. J. Revealing surface states in In-doped SnTe nanoplates with low bulk mobility. Nano Lett. 2015, 15, 3827–3832.

    Article  CAS  Google Scholar 

  24. Ali, M. N.; Gibson, Q. D.; Klimczuk, T.; Cava, R. J. Noncentro-symmetric superconductor with a bulk three-dimensional Dirac cone gapped by strong spin-orbit coupling. Phys. Rev. B 2014, 89, 020505.

    Article  CAS  Google Scholar 

  25. Guan, S. Y.; Chen, P. J.; Chu, M. W.; Sankar, R.; Chou, F. C.; Jeng, H. T.; Chang, C. S.; Chuang, T. M. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2. Sci. Adv. 2016, 2, e1600894.

    Article  CAS  Google Scholar 

  26. Long, Y. J.; Zhao, L. X.; Wang, P. P.; Yang, H. X.; Li, J. Q.; Zi, H.; Ren, Z. A.; Ren, C.; Chen, G. F. Single crystal growth and physical property characterization of non-centrosymmetric superconductor PbTaSe2. Chin. Phys. Lett. 2016, 33, 037401.

    Article  Google Scholar 

  27. Xu, X. T.; Kang, Z. B.; Chang, T. R.; Lin, H.; Bian, G.; Yuan, Z. J.; Qu, Z.; Zhang, J. L.; Jia, S. Quantum oscillations in the non-centrosymmetric superconductor and topological nodal-line semimetal PbTaSe2. Phys. Rev. B 2019, 99, 104516.

    Article  CAS  Google Scholar 

  28. Chang, T. R.; Chen, P. J.; Bian, G.; Huang, S. M.; Zheng, H.; Neupert, T.; Sankar, R.; Xu, S. Y.; Belopolski, I.; Chang, G. Q. et al. Topological Dirac surface states and superconducting pairing correlations in PbTaSe2. Phys. Rev. B 2016, 93, 245130.

    Article  Google Scholar 

  29. Bian, G.; Chang, T. R.; Sankar, R.; Xu, S. Y.; Zheng, H.; Neupert, T.; Chiu, C. K.; Huang, S. M.; Chang, G. Q.; Belopolski, I. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 2016, 7, 10556.

    Article  CAS  Google Scholar 

  30. Maeda, S.; Matano, K.; Zheng, G. Q. Fully gapped spin-singlet superconductivity in noncentrosymmetric PbTaSe2:207Pb nuclear magnetic resonance study. Phys. Rev. B 2018, 97, 184510.

    Article  CAS  Google Scholar 

  31. Pang, G. M.; Smidman, M.; Zhao, L. X.; Wang, Y. F.; Weng, Z. F.; Che, L. Q.; Chen, Y.; Lu, X.; Chen, G. F.; Yuan, H. Q. Nodeless superconductivity in noncentrosymmetric PbTaSe2 single crystals. Phys. Rev. B 2016, 93, 060506.

    Article  CAS  Google Scholar 

  32. Wilson, M. N.; Hallas, A. M.; Cai, Y.; Guo, S.; Gong, Z.; Sankar, R.; Chou, F. C.; Uemura, Y. J.; Luke, G. M. μsR study of the noncentro-symmetric superconductor PbTaSe2. Phys. Rev. B 2017, 95, 224506.

    Article  Google Scholar 

  33. Zhang, C. L.; Yuan, Z. J.; Bian, G.; Xu, S. Y.; Zhang, X.; Hasan, M. Z.; Jia, S. Superconducting properties in single crystals of the topological nodal semimetal PbTaSe2. Phys. Rev. B 2016, 93, 054520.

    Article  CAS  Google Scholar 

  34. Bian, G.; Chang, T. R.; Zheng, H.; Velury, S.; Xu, S. Y.; Neupert, T.; Chiu, C. K.; Huang, S. M.; Sanchez, D. S.; Belopolski, I. et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys. Rev. B 2016, 93, 121113.

    Article  CAS  Google Scholar 

  35. Sun, J. P. Topological nodal line semimetal in non-centrosymmetric PbTaS2. Chin. Phys. Lett. 2017, 34, 077101.

    Article  Google Scholar 

  36. Chen, D. Y.; Wu, Y. L.; Jin, L.; Li, Y. K.; Wang, X. X.; Duan, J. X.; Han, J. F.; Li, X.; Long, Y. Z.; Zhang, X. M. et al. Superconducting properties in a candidate topological nodal line semimetal SnTaS2 with a centrosymmetric crystal structure. Phys. Rev. B 2019, 100, 064516.

    Article  CAS  Google Scholar 

  37. Zhang, J. L.; Zhang, S. J.; Weng, H. M.; Zhang, W.; Yang, L. X.; Liu, Q. Q.; Feng, S. M.; Wang, X. C.; Yu, R. C.; Cao, L. Z. et al. Pressure-induced superconductivity in topological parent compound Bi2Te3. Proc. Natl. Acad. Sci. USA 2011, 108, 24–28.

    Article  CAS  Google Scholar 

  38. Zhu, J.; Zhang, J. L.; Kong, P. P.; Zhang, S. J.; Yu, X. H.; Zhu, J. L.; Liu, Q. Q.; Li, X.; Yu, R. C.; Ahuja, R. et al. Superconductivity in topological insulator Sb2Te3 induced by pressure. Sci. Rep. 2013, 3, 2016.

    Article  CAS  Google Scholar 

  39. Li, Q.; Kharzeev, D. E.; Zhang, C.; Huang, Y.; Pletikosić, I.; Fedorov, A. V.; Zhong, R. D.; Schneeloch, J. A.; Gu, G. D.; Valla, T. Chiral magnetic effect in ZrTe5. Nat. Phys. 2016, 12, 550–554.

    Article  CAS  Google Scholar 

  40. Dissanayake, S.; Duan, C. R.; Yang, J. J.; Liu, J.; Matsuda, M.; Yue, C. M.; Schneeloch, J. A.; Teo, J. C. Y.; Louca, D. Electronic band tuning under pressure in MoTe2 topological semimetal. npj Quantum Mater. 2019, 4, 45.

    Article  CAS  Google Scholar 

  41. Liu, C. X. Unconventional superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2017, 118, 087001.

    Article  Google Scholar 

  42. Hsu, Y. T.; Vaezi, A.; Fischer, M. H.; Kim, E. A. Topological superconductivity in monolayer transition metal dichalcogenides. Nat. Commun. 2017, 8, 14985.

    Article  CAS  Google Scholar 

  43. Chen, P. J.; Chang, T. R.; Jeng, H. T. Ab initio study of the PbTaSe2-related superconducting topological metals. Phys. Rev. B 2016, 94, 165148.

    Article  CAS  Google Scholar 

  44. Gao, J. J.; Si, J. G.; Luo, X.; Yan, J.; Jiang, Z. Z.; Wang, W.; Xu, C. Q.; Xu, X. F.; Tong, P.; Song, W. H. et al. Superconducting and topological properties in centrosymmetric PbTaS2 single crystals. J. Phys. Chem. C 2020, 124, 6349–6355.

    Article  CAS  Google Scholar 

  45. Gentile, P. S.; Driscoll, D. A.; Hockman, A. J. Preparation and Mössbauer effect of tin intercalates of layered transition metal dichalcogenides. Inorganica Chim. Acta 1979, 35, 249–253.

    Article  CAS  Google Scholar 

  46. Eppinga, R.; Wiegers, G. A. A generalized scheme for niobium and tantalum dichalcogenides intercalated with post-transition elements. Phys. B+C 1980, 99, 121–127.

    Article  CAS  Google Scholar 

  47. van der Lee, A.; Wiegers, G. A. Single crystal X-ray study of SnTaS2 at 295 and 425 K. Mater. Res. Bull. 1990, 25, 1011–1018.

    Article  CAS  Google Scholar 

  48. Fang, C. M.; Wiegers, G. A.; Meetsma, A.; de Groot, R. A.; Haas, C. Crystal structure and band structure calculations of Pb13TaS2 and Sn13NbS2. Phys. B 1996, 226, 259–267.

    Article  CAS  Google Scholar 

  49. Bhoi, D.; Khim, S.; Nam, W.; Lee, B. S.; Kim, C.; Jeon, B. G.; Min, B. H.; Park, S.; Kim, K. H. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2. Sci. Rep. 2016, 6, 24068.

    Article  CAS  Google Scholar 

  50. Dijkstra, J.; Broekhuizen, E. A.; van Bruggen, C. F.; Haas, C.; De Groot, R. A.; van der Meulen, H. P. Band structure, photoelectron spectroscopy, and transport properties of SnTaS2. Phys. Rev. B 1989, 40, 12111.

    Article  CAS  Google Scholar 

  51. Eppinga, R.; Wiegers, G. A.; Haas, C. Photoelectron spectra and transport properties of intercalates of Nb and Ta dichalcogenides with Sn and Pb. Phys. B+C 1981, 105, 174–178.

    Article  CAS  Google Scholar 

  52. Eppinga, R.; Sawatzky, G. A.; Haas, C.; van Bruggen, C. F. Photoelectron spectra of 2H-TaS2 and SnxTaS2. J. Phys. C Solid State Phys. 1976, 9, 3371–3380.

    Article  CAS  Google Scholar 

  53. Liu, J. C.; Zhong, M. Z.; Liu, X.; Sun, G. Z.; Chen, P.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X. et al. Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotechnology 2018, 29, 474002.

    Article  CAS  Google Scholar 

  54. Luo, H.; Xie, W.; Tao, J.; Pletikosic, I.; Valla, T.; Sahasrabudhe, G. S.; Osterhoudt, G.; Sutton, E.; Burch, K. S.; Seibel, E. M. et al. Differences in chemical doping matter: Superconductivity in Ti1−xTaxSe2 but not in Ti1−xNbxSe2. Chem.Mater. 2016, 28, 1927–1935.

    Article  CAS  Google Scholar 

  55. Yan, Z.; Jiang, C.; Pope, T. R.; Tsang, C. F.; Stickney, J. L.; Goli, P.; Renteria, J.; Salguero, T. T.; Balandin, A. A. Phonon and thermal properties of exfoliated TaSe2 thin films. J. Appl. Phys. 2013, 114, 204301.

    Article  CAS  Google Scholar 

  56. Luo, H. X.; Xie, W. W.; Tao, J.; Inoue, H.; Gyenis, A.; Krizan, J. W.; Yazdani, A.; Zhu, Y. M.; Cava, R. J. Polytypism, polymorphism, and superconductivity in TaSe2xTex. Proc. Natl. Acad. Sci. USA 2015, 112, E1174–E1180.

    Article  CAS  Google Scholar 

  57. Gao, H.; Venderbos, J. W. F.; Kim, Y.; Rappe, A. M. Topological semimetals from first principles. Annu. Rev. Mater. Res. 2019, 49, 153–183.

    Article  CAS  Google Scholar 

  58. Jin, K. H.; Huang, H. Q.; Mei, J. W.; Liu, Z.; Lim, L. K.; Liu, F. Topological superconducting phase in high-Tc superconductor MgB2 with Dirac-nodal-line fermions. Npj Comput. Mater. 2019, 5, 57.

    Article  CAS  Google Scholar 

  59. Gupta, S.; Juneja, R.; Shinde, R.; Singh, A. K. Topologically nontrivial electronic states in CaSn3. J. Appl. Phys. 2017, 121, 214901.

    Article  CAS  Google Scholar 

  60. Dimitri, K.; Hosen, M. M.; Dhakal, G.; Choi, H.; Kabir, F.; Sims, C.; Kaczorowski, D.; Durakiewicz, T.; Zhu, J. X.; Neupane, M. Dirac state in a centrosymmetric superconductor α-PdBi2. Phys. Rev. B 2018, 97, 144514.

    Article  CAS  Google Scholar 

  61. Gresch, D.; Autès, G.; Yazyev, O. V.; Troyer, M.; Vanderbilt, D.; Bernevig, B. A.; Soluyanov, A. A. Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials. Phys. Rev. B 2017, 95, 075146.

    Article  Google Scholar 

  62. Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419–1475.

    Article  CAS  Google Scholar 

  63. Yu, R.; Qi, X. L.; Bernevig, A.; Fang, Z.; Dai, X. Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Phys. Rev. B 2011, 84, 075119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support in part by the National Key R&D Program of China (No. 2017YFA0303500), the National Natural Science Foundation of China (NSFC) (Nos. U1932201, 11574280, and 21727801), NSFC-MAECI (No. 51861135202), International Partnership Program of CAS (No. 211134KYSB20190063), CAS Collaborative Innovation Program of Hefei Science Center (No. 2019HSC-CIP002). We thank the USTC supercomputer center (USTC SCC). M. L. A. acknowledges the Chinese Scholarship Council Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Wu or Li Song.

Additional information

Notes

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, M.L., Liu, Z., Moses, O.A. et al. Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2. Nano Res. 14, 2613–2619 (2021). https://doi.org/10.1007/s12274-020-3262-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3262-2

Keywords

Navigation