Skip to main content
Log in

Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ti-based anode materials in sodium ion batteries have attracted extensive interests due to its abundant resources, low toxicity, easy synthesis and long cycle life. However, low Coulombic efficiency and limited specific capacity affect their applications. Here, cubic-phase TiP2O7 is examined as anode materials, using in-situ/ex-situ characterization techniques. It is concluded that the redox reactions of Ti4+/Ti3+ and Ti3+/Ti0 consecutively occur during the discharge/charge processes, both of which are highly reversible. These reactions make the specific capacity of TiP2O7 even higher than the case of TiO2 that only contains a simple anion, O2−. Interestingly, Ti species participate only one of the redox reactions, due to the remarkable difference in local structures related to the sodiation process. The stable discharge/charge products in TiP2O7 reduce the side reactions and improve the Coulombic efficiency as compared to TiO2. These features make it a promising Ti-based anode for sodium ion batteries. Therefore, TiP2O7@C microflowers exhibit excellent electrochemical performances, ~ 109 mAh·g−1 after 10,000 cycles at 2 A·g−1, or 95.2 mAh·g−1 at 10 A·g−1. The results demonstrate new opportunities for advanced Ti-based anodes in sodium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Google Scholar 

  2. Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.

    CAS  Google Scholar 

  3. Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.

    CAS  Google Scholar 

  4. Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.

    CAS  Google Scholar 

  5. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

    CAS  Google Scholar 

  6. Pan, J.; Wang, N. N.; Zhou, Y. L.; Yang, X. F.; Zhou, W. Y.; Qian, Y. T.; Yang, J. Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Res. 2017, 10, 1794–1803.

    CAS  Google Scholar 

  7. Hou, H. S.; Qiu, X. Q.; Wei, W. F.; Zhang, Y.; Ji, X. B. Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1602898.

    Google Scholar 

  8. Xiao, L. F.; Cao, Y. L.; Henderson, W. A.; Sushko, M. L.; Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M. H.; Nie, Z. M.; Liu, J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 2016, 19, 279–288.

    CAS  Google Scholar 

  9. Wu, C. J.; Hua, W. B.; Zhang, Z.; Zhong, B. H.; Yang, Z. G.; Feng, G L.; Xiang, W.; Wu, Z. G.; Guo, X. D. Design and synthesis of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries. Adv. Sci. 2018, 5, 1800519.

    Google Scholar 

  10. Liu, Y.; Liu, J. Y.; Hou, M. Y.; Fan, L.; Wang, Y. G.; Xia, Y. Y. Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. J. Mater. Chem. A 2017, 5, 10902–10908.

    CAS  Google Scholar 

  11. Wahid, M.; Puthusseri, D.; Gawli, Y.; Sharma, N.; Ogale, S. Hard carbons for sodium-ion battery anodes: Synthetic strategies, material properties, and storage mechanisms. ChemSusChem 2018, 11, 506–526.

    CAS  Google Scholar 

  12. Saurel, D.; Orayech, B.; Xiao, B. W.; Carriazo, D.; Li, X. L.; Rojo, T. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 2018, 8, 1703268.

    Google Scholar 

  13. Senguttuvan, P.; Rousse, G.; Seznec, V. Tarascon, J. M.; Palacín, M. R. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 2011, 23, 4109–4111.

    CAS  Google Scholar 

  14. Nie, S.; Liu, L.; Li, M.; Liu, J. F.; Xia, J.; Zhang, Y.; Wang, X. Y. Na2Ti3O7/C nanofibers for high-rate and ultralong-life anodes in sodium-ion batteries. ChemElectroChem 2018, 5, 3498–3505.

    CAS  Google Scholar 

  15. Fang, Y. J.; Xiao, L. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Huang, Y, H.; Yang, H. X. 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1502197.

    Google Scholar 

  16. Su, D. W.; Dou, S. X.; Wang, G. X. Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 2015, 27, 6022–6029.

    CAS  Google Scholar 

  17. Wang, D. X.; Liu, Q.; Chen, C. J.; Li, M. L.; Meng, X.; Bie, X. F.; Wei, Y. J.; Huang, Y. H.; Du, F.; Wang, C. Z. et al. NASICON-structured NaTi2(PO4)3@C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interface 2016, 8, 2238–2246.

    CAS  Google Scholar 

  18. Zhao, H. Y.; Zhang, F.; Zhang, S. M.; He, S. N.; Shen, F.; Han, X. G.; Yin, Y. D.; Cao, C. B. Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res. 2018, 11, 1822–1833.

    CAS  Google Scholar 

  19. Song, T. B.; Chen, H.; Li, Z.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y. Creating an air-stable sulfur-doped black phosphorus-TiO2 composite as high-performance anode material for sodium-ion storage, Adv. Funct. Mater. 2019, 29, 1900535.

    Google Scholar 

  20. Le, Z. Y.; Liu, F.; Nie, P.; Li, X. R.; Liu, X. Y.; Bian, Z. F.; Chen, G.; Wu, H. B.; Lu, Y. F. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 2017, 11, 2952–2960.

    CAS  Google Scholar 

  21. Guo, X.; Zhang, J. Q.; Song, J. J.; Wu, W. J.; Liu, H.; Wang, G. X. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 2018, 14, 306–313.

    Google Scholar 

  22. Li, K. K.; Zhang, J.; Lin, D. M.; Wang, D. W.; Li, B. H.; Lv, W.; Sun, S.; He, Y. B.; Kang, F. Y.; Yang, Q. H. et al. Author correction: Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 1248.

    Google Scholar 

  23. Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.

    Google Scholar 

  24. Longoni, G.; Cabrera, R. L. P.; Polizzi, S.; D’Arienzo, M.; Mari, C. M.; Cui, Y.; Ruffo, R. Shape-controlled TiO2 nanocrystals for Na-ion battery electrodes: The role of different exposed crystal facets on the electrochemical properties. Nano Lett. 2017, 17, 992–1000.

    CAS  Google Scholar 

  25. Sanz, J.; Iglesias, J. E.; Soria, J.; Losilla, E. R.; Aranda, M. A. G.; Bruque, S. Structural disorder in the cubic 3 × 3 × 3 superstructure of TiP2O7 XRD and NMR study. Chem. Mater. 1997, 9, 996–1003.

    CAS  Google Scholar 

  26. Kim, K. T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H. S.; Sun, Y. K.; Lu, J.; Amine, K.; Myung, S. T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.

    CAS  Google Scholar 

  27. Pan, J.; Chen, S. L.; Zhang, D. P.; Xu, X. N.; Sun, Y. W.; Tian, F.; Gao, P.; Yang, J. SnP2O7 covered carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1804672.

    Google Scholar 

  28. Pan, J.; Chen, S. L.; Fu, Q.; Sun, Y. W.; Zhang, Y. C.; Lin, N.; Gao, P.; Yang, J.; Qian, Y. T. Layered-structure SbPO4/reduced graphene oxide: An advanced anode material for sodium ion batteries. ACS Nano 2018, 12, 12869–12878.

    CAS  Google Scholar 

  29. Pan, J.; Zhang, Y. C.; Li, L. L.; Cheng, Z. J.; Li, Y. L.; Yang, X. F.; Yang, J.; Qian, Y. T. Polyanions enhance conversion reactions for lithium/sodium-ion batteries: The case of SbVO4 nanoparticles on reduced graphene oxide. Small Methods 2019, 3, 1900231.

    CAS  Google Scholar 

  30. Senguttuvan, P.; Rousse, G.; Oró-Solé, J.; Tarascon, J. M.; Palacín, M. R. A low temperature TiP2O7 polymorph exhibiting reversible insertion of lithium and sodium ions. J. Mater. Chem. A 2013, 1, 15284–15291.

    CAS  Google Scholar 

  31. Hu, Q.; Liang, J. Y.; Liao, J. Y.; Tang, Z. F.; Ding, X.; Chen, C. H. A comparative study on nanocrystalline layered and crystalline cubic TiP2O7 for rechargeable Li/Na/K alkali metal batteries. J. Mater. Chem. A 2018, 6, 15230–15236.

    CAS  Google Scholar 

  32. Li, Z. T.; Dong, Y. F.; Feng, J. Z.; Xu, T.; Ren, H.; Gao, C.; Li, Y. R.; Cheng, M. J.; Wu, W. T.; Wu, M. B. Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries. ACS Nano 2019, 13, 9227–9236.

    CAS  Google Scholar 

  33. Wen, Y. P.; Chen, L.; Pang, Y.; Guo, Z. W.; Bin, D.; Wang, Y. G.; Wang, C. X.; Xia, Y. Y. TiP2O7 and expanded graphite nanocomposite as anode material for aqueous lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 8075–8082.

    CAS  Google Scholar 

  34. Yee, G.; Shanbhag, S.; Wu, W.; Carlisle, K.; Chang, J.; Whitacre, J. F. TiP2O7 exhibiting reversible interaction with sodium ions in aqueous electrolytes. Electrochem. Commun. 2018, 86, 104–107.

    CAS  Google Scholar 

  35. Chu, C. X.; Yang, J.; Zhang, Q. Q.; Wang, N. N.; Niu, F. E.; Xu, X. N.; Yang, J.; Fan, W. L.; Qian, Y. T. Biphase-interface enhanced sodium storage and accelerated charge transfer: Flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 43648–43656.

    CAS  Google Scholar 

  36. Sun, Y. R.; Gai, L. G.; Zhou, Y.; Zuo, X. Z.; Zhou, J. H.; Jiang, H. H. Polyhierarchically structured TiP2O7/C microparticles with enhanced electrochemical performance for lithium-ion batteries. CrystEngComm 2014, 16, 10681–10691.

    CAS  Google Scholar 

  37. Xu, C.; Xu, Y. N.; Tang, C. J.; Wei, Q. L.; Meng, J. S.; Huang, L.; Zhou, L.; Zhang, G. B.; He, L.; Mai, L. Q. Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 2016, 28, 224–231.

    CAS  Google Scholar 

  38. Xing, O.; Yang, C. H.; Xiong, X. H.; Zheng, F. H.; Pan, Q. C.; Jin, C.; Liu, M. L.; Huang, K. A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: In situ X-ray diffraction study on a live sodiation/desodiation process. Adv. Funct. Mater. 2017, 27, 1606242.

    Google Scholar 

  39. Wei, Z. X.; Wang, D. X.; Li, M. L.; Guo, Y.; Wang, C. Z.; Chen, G.; Du, F. Fabrication of hierarchical potassium titanium phosphate spheroids: A host material for sodium-ion and potassium-ion storage. Adv. Energy Mater. 2018, 8, 1801102.

    Google Scholar 

  40. Li, L.; Seng, K. H.; Li, D.; Xia, Y. Y.; Liu, H. K.; Guo, Z. P. SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res. 2014, 7, 1466–1476.

    CAS  Google Scholar 

  41. Xu, Z. L.; Lim, K.; Park, K. Y.; Yoon, G.; Seong, W. M.; Kang, K. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1802099.

    Google Scholar 

  42. Wang, N. N.; Bai, Z. C.; Qian, Y. T.; Yang, J. One-dimensional yolk-shell Sb@Ti-O-P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries. ACS Appl. Mater. Interface 2017, 9, 447–454.

    CAS  Google Scholar 

  43. Zeng, C.; Xie, F. X.; Yang, X. F.; Jaroniec, M.; Zhang, L.; Qiao, S. Z. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem., Int. Ed. 2018, 57, 8540–8544.

    CAS  Google Scholar 

  44. Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

    CAS  Google Scholar 

  45. Wu, C.; Kopold, P.; Ding, Y. L.; van Aken, P. A.; Maier, J.; Yu, Y. Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 2015, 9, 6610–6618.

    CAS  Google Scholar 

  46. Yang, G. Z.; Song, H. W.; Wu, M. M.; Wang, C. X. Porous NaTi2(PO4)3 nanocubes: A high-rate nonaqueous sodium anode material with more than 10,000 cycle life. J. Mater. Chem. A 2015, 3, 18718–18726.

    CAS  Google Scholar 

  47. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruna, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudo-capacitance. Nat. Mater. 2013, 12, 518–522.

    CAS  Google Scholar 

  48. Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. H. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802–1809.

    CAS  Google Scholar 

  49. Hwang, J. Y.; Du, H. L.; Yun, B. N.; Jeong, M. G.; Kim, J. S.; Kim, H.; Jung, H. G.; Sun, Y. K. Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 2019, 4, 494–501.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for their financial support from the National Natural Science Foundation of China (Nos. 21971146, 61527809, and 21471090), Development Programs of Shandong Province (Nos. 2017 GGX40101 and 2017CXGC0503), Taishan Scholarship of Shandong Province (No. ts201511004), the Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20180305164424922), and the Fundamental Research Funds of Shandong University (No. 2018JC023). We thank Dr. Kepeng Song for high-resolution transmission electron microscope images and thank Dr. Tania Silver for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Wang, N., Li, L. et al. Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries. Nano Res. 14, 139–147 (2021). https://doi.org/10.1007/s12274-020-3057-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3057-5

Keywords

Navigation