Skip to main content

Advertisement

Log in

Ultra-stable K metal anode enabled by oxygen-rich carbon cloth

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

The K metal batteries are emerged as promising alternatives beyond commercialized Li-ion batteries. However, suppressing uncontrolled dendrite is crucial to the accomplishment of K metal batteries. Herein, an oxygen-rich treated carbon cloth (TCC) has been designed as the K plating host to guide K homogeneous nucleation and suppress the dendrite growth. Both density function theory calculations and experimental results demonstrate that abundant oxygen functional groups as K-philic sites on TCC can guide K nucleation and deposition homogeneously. As a result, the TCC electrode exhibits an ultra-long-life over 800 cycles at high current density of 3.0 mA·cm−2 for 3.0 mA·h·cm−2. Furthermore, the symmetrical cells can run stably for 2,000 h with low over-potential less than 20 mV at 1.0 mA·cm−2 for 1.0 mA·h·cm−2. Even at a higher current of 5.0 mA·cm−2, the TCC electrode can still stably cycle for 1,400 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmuch, R.; Wagner, R.; Hörpel, G; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy, 2018, 3, 267–278.

    Article  CAS  Google Scholar 

  2. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.

    Article  Google Scholar 

  3. Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172–175.

    Article  CAS  Google Scholar 

  4. Eftekhari, A.; Jian, Z. L.; Ji, X. L. Potassium secondary batteries. ACS Appl. Mater. Interfaces 2017, 9, 4404–4419.

    Article  CAS  Google Scholar 

  5. Xiao, N.; Ren, X. D.; McCulloch, W. D.; Gourdin, G; Wu, Y. Y. Potassium superoxide: A unique alternative for metal-air batteries. Acc. Chem. Res. 2018, 51, 2335–2343.

    Article  CAS  Google Scholar 

  6. Pandey, A.; Prasad, A.; Moscatello, J. P.; Engelhard, M.; Wang, C. M.; Yap, Y. K. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds. ACS Nano 2013, 7, 117–125.

    Article  CAS  Google Scholar 

  7. Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.

    Article  Google Scholar 

  8. Lei, Y.; Qin, L.; Liu, R. L.; Lau, K. C.; Wu, Y. Y.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Exploring stability of nonaqueous electrolytes for potassiumion batteries. ACS Appl. Energy Mater. 2018, 7, 1828–1833.

    Article  Google Scholar 

  9. Li, Y. Q.; Zhang, L. Y.; Liu, S. F.; Wang, X. L.; Xie, D.; Xia, X. H.; Gu, C. D.; Tu, J. P. Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy 2019, 62, 367–375.

    Article  CAS  Google Scholar 

  10. Xiao, N.; McCulloch, W. D.; Wu, Y. Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries. J. Am. Chem. Soc. 2017, 139, 9475–9478.

    Article  CAS  Google Scholar 

  11. Wang, H. W.; Hu, J. Y.; Dong, J. H.; Lau, C. K.; Qin, L.; Lei, Y.; Li, B. H.; Zhai, D. Y.; Wu, Y. Y.; Kang, F. Y. Artificial solid-electrolyte interphase enabled high-capacity and stable cycling potassium metal batteries. Adv. Energy Mater. 2019, 9, 1902697.

    Article  CAS  Google Scholar 

  12. Gu, Y.; Wang, W. W.; Li, Y. J.; Wu, Q. H.; Tang, S.; Yan, J. W; Zheng, M. S.; Wu, D. Y.; Fan, C. H.; Hu, W. Q. et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat Commun. 2018, 9, 1339.

    Article  Google Scholar 

  13. Chen, Y. C.; Qin, L.; Lei, Y.; Li, X. J.; Dong, J. H.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Correlation between microstructure and potassium storage behavior in reduced graphene oxide materials. ACS Appl. Mater. Interfaces 2019, 11, 45578–45585.

    Article  CAS  Google Scholar 

  14. Hwang, J. Y.; Kim, H. M.; Yoon, C. S.; Sun, Y. K. Toward high-safety potassium-sulfur batteries using a potassium polysulfide catholyte and metal-free anode. ACS Energy Lett. 2018, 3, 540–541.

    Article  CAS  Google Scholar 

  15. Tang, X.; Zhou, D.; Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. X. MXene-based dendrite-free potassium metal batteries. Adv. Mater. 2020, 32, 1906739.

    Article  CAS  Google Scholar 

  16. Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

    Article  CAS  Google Scholar 

  17. Hong, B.; Fan, H. L.; Cheng, X. B.; Yan, X. L.; Hong, S.; Dong, Q. Y.; Gao, C. H.; Zhang, Z. A.; Lai, Y. Q.; Zhang, Q. Spatially uniform deposition of lithium metal in 3D janus hosts. Energy Storage Mater. 2019, 16, 259–266.

    Article  Google Scholar 

  18. Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv. Mater. 2019, 31, 1807131.

    Article  Google Scholar 

  19. Xiong, W. S.; Jiang, Y.; Xia, Y.; Qi, Y. Y.; Sun, W. W.; He, D.; Liu, Y. M; Zhao, X. Z. A robust 3D host for sodium metal anodes with excellent machinability and cycling stability. Chem. Commun. 2018, 54, 9406–9409.

    Article  CAS  Google Scholar 

  20. Xiao, N.; Gourdin, G.; Wu, Y. Y. Simultaneous stabilization of potassium metal and superoxide in K−O2 batteries on the basis of electrolyte reactivity. Angew. Chem., Int. Ed. 2018, 57, 10864–10867.

    Article  CAS  Google Scholar 

  21. Hosaka, T.; Kubota, K.; Kojima, H.; Komaba, S. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chem. Commun. 2018, 54, 8387–8390.

    Article  CAS  Google Scholar 

  22. Xie, Y. Y.; Hu, J. X.; Han, Z. X.; Wang, T. S.; Zheng, J. Q.; Gan, L.; Lai, Y. Q.; Zhang, Z. A. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 2020, 30, 1–8.

    Article  Google Scholar 

  23. Xie, Y. Y.; Hu, J. X.; Zhang, Z. A. A stable carbon host engineering surface defects for room-temperature liquid Na-K anode. J. Electroanal. Chem. 2020, 856, 113676.

    Article  CAS  Google Scholar 

  24. Qin, L.; Yang, W.; Lv, W.; Liu, L.; Lei, Y.; Yu, W.; Kang, F. Y.; Kim, J. K.; Zhai, D. Y.; Yang, Q. H. Room-temperature liquid metalbased anodes for high-energy potassium-based electrochemical devices. Chem. Commun. 2018, 54, 8032–8035.

    Article  CAS  Google Scholar 

  25. Xue, L. G; Zhou, W. D.; Xin, S.; Gao, H. C.; Li, Y. T.; Zhou, A. J.; Goodenough, J. B. Room-temperature liquid Na-K anode membranes. Angew. Chem., Int. Ed. 2018, 130, 14184–14187.

    Article  Google Scholar 

  26. Wu, Y. P.; Huang, L.; Huang, X. K.; Guo, X. R.; Liu, D.; Zheng, D.; Zhang, X. L.; Ren, R.; Qu, D. Y.; Chen, J. H. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 2017, 10, 1854–1861.

    Article  CAS  Google Scholar 

  27. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 2002, 14, 2717–2744.

    CAS  Google Scholar 

  28. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K. P.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Crystall. Mater. 2005, 220, 567–570.

    CAS  Google Scholar 

  29. John, P. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  30. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 732, 154104.

    Article  Google Scholar 

  31. Go, W.; Kim, M. H.; Park, J.; Lim, C. H.; Joo, S. H.; Kim, Y.; Lee, H. W. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett. 2019, 19, 1504–1511.

    Article  CAS  Google Scholar 

  32. Zheng, Z. J.; Zeng, X. X.; Ye, H.; Cao, F. F.; Wang, Z. B. Nitrogen and oxygen co-doped graphitized carbon fibers with sodiophilic-rich sites guide uniform sodium nucleation for ultrahigh-capacity sodium-metal anodes. ACS Appl. Mater. Interfaces 2018, 10, 30417–30425.

    Article  CAS  Google Scholar 

  33. Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Lin, Y. H. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790–1798.

    Article  CAS  Google Scholar 

  34. Sha, J. J.; Dai, J. X.; Li, J.; Wei, Z. Q.; Hausherr, J. M.; Krenkel, W. Influence of thermal treatment on thermo-mechanical stability and surface composition of carbon fiber. Appl. Surf. Sci. 2013, 274, 89–94.

    Article  CAS  Google Scholar 

  35. Qiu, W. D.; Xiao, H. B.; Li, Y.; Lu, X. H.; Tong, Y. X. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder — free anode for flexible advanced potassium ion full batteries. Small, 2019, 15, 1901285.

    Article  Google Scholar 

  36. Zhang, L. Y.; Peng, S. S.; Ding, Y.; Guo, X. L.; Qian, Y. M; Celio, H.; He, G. H.; Yu, G. H. A graphite intercalation compound associated with liquid Na-K towards ultra-stable and high-capacity alkali metal anodes. Energy Environ. Sci. 2019, 12, 1989–1998.

    Article  CAS  Google Scholar 

  37. Hundekar, P.; Basu, S.; Fan, X. L.; Li, L.; Yoshimura, A.; Gupta, T.; Sarbada, V.; Lakhnot, A.; Jain, R.; Narayanan, S. et al. In situ healing of dendrites in a potassium metal battery. Proc. Natl. Acad. Sci. USA 2020, 117, 5588–5594.

    Article  CAS  Google Scholar 

  38. Fan, H. L.; Gao, C. H.; Jiang, H.; Dong, Q. Y.; Hong, B.; Lai, Y. Q. A systematical study on the electrodeposition process of metallic lithium. J. Energy Chem. 2020, 49, 59–70.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Innovation Program of Central South University (No. 2019zzts249), and the authors would like to appreciate Xiaobin Zhou for the help of XPS tests from Shiyanjia Lab (http://www.shiyanjia.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhian Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Hu, J., Han, Z. et al. Ultra-stable K metal anode enabled by oxygen-rich carbon cloth. Nano Res. 13, 3137–3141 (2020). https://doi.org/10.1007/s12274-020-2984-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2984-5

Keywords