Skip to main content
Log in

Vasarely painting at the nanoscale on sapphire crystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate that convenient thermal treatment of a specific sapphire vicinal surface can induce the formation of a fully two-dimensional (2D) ordered surface made of a periodic assembly of (006) facets. The similarity between the resulting surface topography and patterns represented in the “hexagon series” of paintings by Vasarely is really striking! We thus propose to call these surfaces as “nanoscaled Vasarely surfaces”. We also show that the self-organization process, which is driven by the minimization of the free energy of a closed system, results in a quasi-linear isothermal growth of the facets’ surface area over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature2005, 437, 671–679.

    Article  CAS  Google Scholar 

  2. Yagi, K.; Minoda, H.; Degawa, M. Step bunching, step wandering and faceting: Self-organization at Si surfaces. Surf. Sci. Rep.2001, 43, 45–126.

    Article  CAS  Google Scholar 

  3. Misbah, C.; Pierre-Louis, O.; Saito, Y. Crystal surfaces in and out of equilibrium: A modern view. Rev. Mod. Phys.2010, 82, 981–1040.

    Article  CAS  Google Scholar 

  4. Kim, Y.; Jo, M. H.; Kim, T. C.; Yang, C. W.; Kim, J. W.; Hwang, J. S.; Noh, D. Y.; Kim, N. D.; Chung, J. W. Coarsening kinetics of a spinodally decomposed vicinal Si(111) surface. Phys. Rev. Lett.2009, 102, 156103.

    Article  CAS  Google Scholar 

  5. Rousset, S.; Repain, V.; Baudot, G.; Garreau, Y.; Lecoeur, J. Self-ordering of Au(111) vicinal surfaces and application to nanostructure organized growth. J. Phys.: Condens. Matter2003, 15, S3363.

    CAS  Google Scholar 

  6. Men, F. K.; Liu, F.; Wang, P. J.; Chen, C. H.; Cheng, D. L.; Lin, J. L.; Himpsel, F. J. Self-organized nanoscale pattern formation on vicinal Si(111) surfaces via a two-stage faceting transition. Phys. Rev. Lett.2002, 88, 096105.

    Article  CAS  Google Scholar 

  7. Cuccureddu, F.; Murphy, S.; Shvets, I. V.; Porcu, M.; Zandbergen, H. W.; Sidorov, N. S.; Bolzhko, S. I. Surface morphology of c-plane sapphire (α-alumina) produced by high temperature anneal. Surf. Sci.2010, 604, 1294–1299.

    Article  CAS  Google Scholar 

  8. Sánchez, F.; Herranz, G.; Infante, I. C.; Fontcuberta, J.; Garcia-Cuenca, M. V.; Ferrater, C.; Varela, M. Critical effects of substrate terraces and steps morphology on the growth mode of epitaxial SrRuO3 films. Appl. Phys. Lett.2004, 85, 1981–1983.

    Article  CAS  Google Scholar 

  9. Nakamura, S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science1998, 281, 956–961.

    Article  CAS  Google Scholar 

  10. Koester, R.; Hwang, J. S.; Salomon, D.; Chen, X. J.; Bougerol, C.; Barnes, J. P.; Le Si Dang, D.; Rigutti, L.; de Luna Bugallo, A. et al. M-plane core shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices. Nano Lett.2011, 11, 43839–43845.

    Article  CAS  Google Scholar 

  11. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science2001, 292, 1897–1899.

    Article  CAS  Google Scholar 

  12. Eaton, S. W.; Fu, A.; Wong, A. B.; Ning, C. Z.; Yang, P. D. Semiconductor nanowire lasers. Nat. Rev. Mater.2016, 1, 16028.

    Article  CAS  Google Scholar 

  13. Lee G. H. Role of substrate step bunches on the growth behavior of LiNbO3 thin film on α-Al2O3 substrate. Mater. Sci. Eng. B2007, 138, 41–45.

    Article  CAS  Google Scholar 

  14. Ago, H.; Imamoto, K.; Ishigami, N.; Ohdo, R.; Ikeda, K. I.; Tsuji M. Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire. Appl. Phys. Lett.2007, 90, 123112.

    Article  CAS  Google Scholar 

  15. Bachelet, R.; Cottrino, S.; Nahélou, G.; Coudert, V.; Boulle, A.; Soulestin, B.; Rossignol, F.; Guinebretière R.; Dauger, A. Self-patterned oxide nanostructures grown by post-deposition thermal annealing on stepped surfaces. Nanotechnology2007, 18, 015301.

    Article  CAS  Google Scholar 

  16. Boulle, A.; Kilburger, S.; Di Bin, P.; Millon, E.; Di Bin, C.; Guinebretière, R.; Bessaudou A. Role of nanostructure on the optical waveguiding properties of epitaxial LiNbO3 films. J. Phys. D: Appl. Phys.2009, 42, 145403.

    Article  CAS  Google Scholar 

  17. Aoki, R.; Arakawa, T.; Misawa, N.; Tero, R.; Urisu, T.; Takeuchi, A.; Ogino, T. Immobilization of protein molecules on step-controlled sapphire surfaces. Surf. Sci.2007, 601, 4915–4921.

    Article  CAS  Google Scholar 

  18. Thune, E.; Fakih, A.; Matringe, C.; Babonneau, D.; Guinebretière, R. Understanding of one dimensional ordering mechanisms at the (001) sapphire vicinal surface. J. Appl. Phys.2017, 121, 015301.

    Article  CAS  Google Scholar 

  19. Matringe, C.; Fakih, A.; Thune, E.; Babonneau, D.; Arnaud, S.; Blanc, N.; Boudet, N.; Guinebretière, R. Symmetric faceting of a sapphire vicinal surface revealed by grazing incidence small-angle X-ray scattering 3D mapping. Appl. Phys. Lett.2017, 111, 031601.

    Article  CAS  Google Scholar 

  20. Horcas, I.; Fernández, R.; Gómez-Rodíguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum.2007, 78, 013705.

    Article  CAS  Google Scholar 

  21. Chahine, G. A.; Blanc, N.; Arnaud, S.; de Geuser, F.; Guinebretière, R.; Boudet, N. Advanced non-destructive in situ characterization of metals with the French collaborating research group D2AM/BM02 beamline at the European synchrotron radiation facility. Metals2019, 9, 352.

    Article  Google Scholar 

  22. Babonneau, D. FitGISAXS: software package for modelling and analysis of GISAXS data using IGOR Pro. J. Appl. Cryst.2010, 43, 929–936.

    Article  CAS  Google Scholar 

  23. Robinson, I. K. Crystal truncation rods and surface roughness. Phys. Rev. B1986, 33, 3830–3836.

    Article  CAS  Google Scholar 

  24. Pimpinelli, A.; Villain, J.; Wolf, D. E.; Métois, J. J.; Heyraud, J. C.; Elkinani, I.; Uimin, G. Equilibrium step dynamics on vicinal surfaces. Surf. Sci.1993, 295, 143–153.

    Article  CAS  Google Scholar 

  25. Jeong, H. C.; Williams, E. D. Steps on surfaces: Experiment and theory. Surf. Sci. Rep.1999, 34, 171–294.

    Article  CAS  Google Scholar 

  26. Hahn, T. International Tables for Crystallography Volume A: Space-Group Symmetry; Springer: Dordrecht, 2011.

    Google Scholar 

  27. Babonneau, D.; Vandenhecke, E.; Camelio, S. Formation of nanoripples on amorphous alumina thin films during low-energy ion-beam sputtering: Experiments and simulations. Phys. Rev. B2017, 95, 085412.

    Article  Google Scholar 

  28. Graindorge, T. Représentation Géométrique des Réseaux Nano-structurés de Surfaces Vicinales de Saphir. Master Degree Thesis, Université de Limoges, 2017.

Download references

Acknowledgments

This work has been carried out partially within the QMAX Project No. ANR-09-NANO-031 funded by the French National Agency (ANR) in the frame of its program in Nanosciences, Nanotechnologies and Nanosystems (P3N2009). We acknowledge the synchrotron SOLEIL and the ESRF for provision of beamtime at the synchrotron radiation facilities. The authors express their gratitude towards the Limousin Region for financial support of the PhD salaries of AF and CM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Guinebretière.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matringe, C., Thune, E., Cavalotti, R. et al. Vasarely painting at the nanoscale on sapphire crystals. Nano Res. 13, 2512–2516 (2020). https://doi.org/10.1007/s12274-020-2888-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2888-4

Keywords

Navigation