Skip to main content
Log in

The potentially crucial role of quasi-particle interferences for the growth of silicene on graphite

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A comprehensive picture of the initial stages of silicene growth on graphite is drawn. Evidence is shown that quasiparticle interferences play a crucial role in the formation of the observed silicene configurations. We propose, on one hand, that the charge modulations caused by those quantum interferences serve as templates and guide the incoming Si atoms to self-assemble to the unique \(\left( {\sqrt 3 \times \sqrt 3 } \right)\)R30° honeycomb atomic arrangement. On the other hand, their limited extension limits the growth to about 150 Si atoms under our present deposition conditions. The here proposed electrostatic interaction finally explains the unexpected stability of the observed silicene islands over time and with temperature. Despite the robust guiding nature of those quantum interferences during the early growth phase, we demonstrate that the window of experimental conditions for silicene growth is quite narrow, making it an extremely challenging experimental task. Finally, it is shown that the experimentally observed three-dimensional silicon clusters might very well be the simple result of the end of the silicene growth resulting from the limited extent of the quasi-particle interferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem.2017, 1, 0014.

    Article  CAS  Google Scholar 

  2. De Crescenzi, M.; Berbezier, I.; Scarselli, M.; Castrucci, P.; Abbarchi, M.; Ronda, A.; Jardali, F.; Park, J.; Vach, H. Formation of silicene nanosheets on graphite. ACS Nano2016, 10, 11163–11171.

    Article  CAS  Google Scholar 

  3. Peng, W. B.; Xu, T.; Diener, P.; Biadala, L.; Berthe, M.; Pi, X. D.; Borensztein, Y.; Curcella, A.; Bernard, R.; Prévot, G. et al. Resolving the controversial existence of silicene and germanene nanosheets grown on graphite. ACS Nano2018, 12, 4754–4760.

    Article  CAS  Google Scholar 

  4. Ronci, F.; Colonna, S.; Flammini, R.; De Crescenzi, M.; Scarselli, M.; Salvato, M.; Berbezier, I.; Jardali, F.; Lechner, C.; Pochet, P. et al. High graphene permeability for room temperature silicon deposition: The role of defects. Carbon2020, 158, 631–641.

    Article  CAS  Google Scholar 

  5. Park, C.; Yang, H.; Mayne, A. J.; Dujardin, G.; Seo, S.; Kuk, Y.; Ihm, J.; Kim, G. Formation of unconventional standing waves at graphene edges by valley mixing and pseudospin rotation. Proc. Natl. Acad. Sci. USA2011, 108, 18622–18625.

    Article  CAS  Google Scholar 

  6. Castrucci, P.; Fabbri, F.; Delise, T.; Scarselli, M.; Salvato, M.; Pascale, S.; Francini, F.; Berbezier, I.; Lechner, C.; Jardali, F. et al. Raman investigation of air-stable silicene nanosheets on an inert graphite surface. Nano Res.2018, 11, 5879–5889.

    Article  CAS  Google Scholar 

  7. Yue, N. L.; Myers, J.; Su, L. Q.; Wang, W. T.; Liu, F. D.; Tsu, R.; Zhuang, Y.; Zhang, Y. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene. J. Semicond.2019, 40, 062001.

    Article  CAS  Google Scholar 

  8. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15–50.

    Article  CAS  Google Scholar 

  9. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  10. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  11. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem.2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

  12. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B1994, 50, 17953–17979.

    Article  Google Scholar 

  13. Windiks, R.; Delley, B. Massive thermostatting in isothermal density functional molecular dynamics simulations. J. Chem. Phys.2003, 119, 2481–2487.

    Article  CAS  Google Scholar 

  14. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.1984, 81, 511–519.

    Article  Google Scholar 

  15. Cai, Y. M.; Chuu, C. P.; Wei, C. M.; Chou, M. Y. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B2013, 88, 245408.

    Article  CAS  Google Scholar 

  16. Prévot, G.; Bernard, R.; Cruguel, H.; Curcella, A.; Lazzeri, M.; Leoni, T.; Masson, L.; Ranguis, A.; Borensztein, Y. Formation of silicene on silver: Strong interaction between Ag and Si. Phys. Status Solidi B2016, 253, 206–217.

    Article  CAS  Google Scholar 

  17. Díaz Álvarez, A.; Zhu, T.; Nys, J. P.; Berthe, M.; Empis, M.; Schreiber, J.; Grandidier, B.; Xu, T. Scanning tunneling spectroscopy and Raman spectroscopy of monolayer silicene on Ag(111). Surf. Sci.2016, 653, 92–96.

    Article  CAS  Google Scholar 

  18. Crommie, M. F.; Lutz, C. P.; Eigler D. M. Imaging standing waves in a two-dimensional electron gas. Nature1993, 363, 524–527.

    Article  CAS  Google Scholar 

  19. Hasegawa, Y.; Avouris. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett.1993, 71, 1071–1074.

    Article  CAS  Google Scholar 

  20. Petersen, L.; Sprunger, P. T.; Hofmann; Lægsgaard, E.; Briner, B. G.; Doering, M.; Rust, H. P.; Bradshaw, A. M.; Besenbacher, F.; Plummer, E. W. Direct imaging of the two-dimensional Fermi contour: Fouriertransform STM. Phys. Rev. B1998, 57, R6858–R6861.

    Article  CAS  Google Scholar 

  21. Reifenberger, R. Lessons from Nanoscience: A lecture notes series: Volume 4, fundamentals of atomic force microscopy, Part I: Foundations, 2015; pp 49. https://doi.org/10.1142/9343.

  22. Yang, H.; Mayne, A. J.; Boucherit, M.; Comtet, G.; Dujardin, G.; Kuk, Y. Quantum interference channeling at graphene edges. Nano Lett.2010, 10, 943–947.

    Article  CAS  Google Scholar 

  23. Rutter, G. M.; Crain, J. N.; Guisinger, N. P.; Li, T.; First, P. N.; Stroscio, J. A. Scattering and interference in epitaxial graphene. Science2007, 317, 219–222.

    Article  CAS  Google Scholar 

  24. Iannuzzi, M.; Kalichava, I.; Ma, H. F.; Leake, S. J.; Zhou, H. T.; Li, G.; Zhang, Y.; Bunk, O.; Gao, H. J.; Hutter, J. et al. Moiré beatings in graphene on Ru(0001). Phys. Rev. B2013, 88, 125433.

    Article  CAS  Google Scholar 

  25. Gupta, V.; Kumar, A.; Ray, N. Permeability of two-dimensional graphene and hexagonal-boron nitride to hydrogen atom. AIP Conf. Proc.2018, 1953, 140013.

    Article  CAS  Google Scholar 

  26. Tchalala, M. R.; Enriquez, H.; Bendounan, A.; Mayne, A. J.; Dujardin, G.; Kara, A.; Ali, M. A.; Oughaddou, H. Tip-induced oxidation of silicene nano-ribbons. Nanoscale Adv.2020, doi=https://doi.org/10.1039/D0NA00332H.

Download references

Acknowledgements

We are most thankful to Dr. Andrew Mayne who shared his in-depth understanding of quantum interferences with us in several exciting and encouraging discussions. H. V., F. J., and C. L. gratefully acknowledge the HPC centers of IDRIS (Grant A004-090642) and CERMM for computational resources. F. J. acknowledges the Hariri Foundation for Sustainable Human Development for the scholarship that was awarded to her during her PhD studies. We would like to express our most sincere thanks to Prof. Chih-Piao Chuu for having kindly provided us with the structure files of his most stable silicene configurations. M. D. C., M. S. and P. C. acknowledge the European Community for the HORIZON 2020 MSC-RISE Project DiSeTCom (GA 823728). Many thanks are also due to Dr. James Creel for the careful reading of the present manuscript. We finally would like to acknowledge the fruitful discussions we had with Prof. Sanjay Mathur at the University of Köln.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript results from an intensive collaboration between experimentalists and theoreticians; the theory has been proposed and all simulations have been performed by F. J., C. L., and H. V. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Holger Vach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jardali, F., Lechner, C., De Crescenzi, M. et al. The potentially crucial role of quasi-particle interferences for the growth of silicene on graphite. Nano Res. 13, 2378–2383 (2020). https://doi.org/10.1007/s12274-020-2858-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2858-x

Keywords

Navigation