Skip to main content
Log in

Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The performance of solar cells is determined by three factors: the open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). The VOC and FF are determined by the material bandgap and the series/shunt resistance, respectively. However, JSC is determined by the amount of incident light in addition to the bandgap of the material. In this study, a moth-eye pattern was formed on a glass surface via direct printing to increase the amount of incident light and thus increase JSC. The moth-eye pattern is a typical antireflection pattern that reduces the reflection by gradually increasing the refractive index. A flat perovskite solar cell (F-PSC) and a moth-eye patterned perovskite solar cell (M-PSC) had JSC values of 23.70 and 25.50 mA/cm2, respectively. The power-conversion efficiencies of the F-PSC and M-PSC were 19.81% and 21.77%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuwano, Y.; Okamoto, S.; Tsuda, S. Semiconductor devices save the earth-solar cells. In Proceedings of 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA, 1992, pp 3–10.

    Chapter  Google Scholar 

  2. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science2015, 347, 519–522.

    Article  CAS  Google Scholar 

  3. Dong, Q.F.; Fang, Y.J.; Shao, Y.C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths 7gt; 175 μm in solution-grown CH3NH3PbI3 single crystals. Science2015, 347, 967–970.

    Article  CAS  Google Scholar 

  4. Yin, W.J.; Shi, T.T.; Yan, Y. F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater.2014, 26, 4653–4658.

    Article  CAS  Google Scholar 

  5. Wehrenfennig, C.; Eperon, G.E.; Johnston, M.B.; Snaith, H.J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater.2014, 26, 1584–1589.

    Article  CAS  Google Scholar 

  6. Xing, G.C.; Mathews, N.; Sun, S.Y.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science2013, 342, 344–347.

    Article  CAS  Google Scholar 

  7. Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science2013, 342, 341–344.

    Article  CAS  Google Scholar 

  8. Kim, H.S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E.J.; Park, N. G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun.2013, 4, 2242.

    Article  Google Scholar 

  9. Ji, L.; Zhang, X.Z.; Zhang, T.; Wang, Y.F.; Wang, F.; Zhong, Z.Q.; Chen, Z.D.; Xiao, Z.W.; Chen, L.; Li, S. B. Band alignment of Pb-Sn mixed triple cation perovskites for inverted solar cells with negligible hysteresis. J. Mater. Chem. A2019, 7, 9154–9162.

    Article  CAS  Google Scholar 

  10. Green, M.A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics2014, 8, 506–514.

    Article  CAS  Google Scholar 

  11. Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett.2013, 4, 3623–3630.

    Article  CAS  Google Scholar 

  12. Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett.2013, 4, 2423–2429.

    Article  CAS  Google Scholar 

  13. Mitzi, D. B. Solution-processed inorganic semiconductors. J. Mater. Chem.2004, 14, 2355–2365.

    Article  CAS  Google Scholar 

  14. Liu, D.T.; Zheng, H.L.; Ji, L.; Chen, H.; Wang, Y.F.; Zhang, P.; Wang, F.; Wu, J.; Chen, Z.; Li, S. B. Improved crystallinity of perovskite via molecularly tailored surface modification of SnO2. J. Power Sources2019, 441, 227161.

    Article  CAS  Google Scholar 

  15. Wang, F.; Zhang, T.; Wang, Y.F.; Liu, D.T.; Zhang, P.; Chen, H.; Ji, L.; Chen, L.; Chen, Z.D.; Wu, J. et al. Steering the crystallization of perovskites for high-performance solar cells in ambient air. J. Mater. Chem. A2019, 7, 12166–12175.

    Article  CAS  Google Scholar 

  16. Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci.2014, 7, 2448–2463.

    Article  CAS  Google Scholar 

  17. Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature2013, 499, 316–319.

    Article  CAS  Google Scholar 

  18. Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

    Article  Google Scholar 

  19. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  CAS  Google Scholar 

  20. Jiang, Q.; Chu, Z.M.; Wang, P.Y.; Yang, X.L.; Liu, H.; Wang, Y.; Yin, Z.G.; Wu, J.L.; Zhang, X.W.; You, J. B. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater.2017, 29, 1703852.

    Article  Google Scholar 

  21. Min, H.; Kim, M.; Lee, S.U.; Kim, H.; Kim, G.; Choi, K.; Lee, J.H.; Seok, S. I. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science2019, 366, 749–753.

    Article  CAS  Google Scholar 

  22. Kim, M.C.; Jang, S.; Choi, J.; Kang, S.M.; Choi, M. Moth-eye structured polydimethylsiloxane films for high-efficiency perovskite solar cells. Nano-Micro Lett. 2019, 11, 53.

    Article  CAS  Google Scholar 

  23. Hou, F.H.; Han, C.; Isabella, O.; Yan, L.L.; Shi, B.; Chen, J.F.; An, S.C.; Zhou, Z.X.; Huang, W.; Ren, H. Z. et al. Inverted pyramidally-textured PDMS antireflective foils for perovskite/silicon tandem solar cells with flat top cell. Nano Energy2019, 56, 234–240.

    Article  CAS  Google Scholar 

  24. Liu, R.T.; Lee, S.T.; Sun, B. Q. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007–6012.

    Article  CAS  Google Scholar 

  25. Luo, Q.; Deng, X.S.; Zhang, C.X.; Yu, M.D.; Zhou, X.; Wang, Z.B.; Chen, X.H.; Huang, S. M. Enhancing photovoltaic performance of perovskite solar cells with silica nanosphere antireflection coatings. Solar Energy2018, 169, 128–135.

    Article  CAS  Google Scholar 

  26. Kim, M.; Kang, T.W.; Kim, S.H.; Jung, E.H.; Park, H.H.; Seo, J.; Lee, S. J. Antireflective, self-cleaning and protective film by continuous sputtering of a plasma polymer on inorganic multilayer for perovskite solar cells application. Solar Energy Mater. Solar Cells2019, 191, 55–61.

    Article  CAS  Google Scholar 

  27. Schneider, B.W.; Lal, N.N.; Baker-Finch, S.; White, T. P. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Opt. Express2014, 22, A1422–A1430.

    Article  CAS  Google Scholar 

  28. Kang, S.M.; Jang, S.; Lee, J.K.; Yoon, J.; Yoo, D.E.; Lee, J.W.; Choi, M.; Park, N. G. Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small2016, 12, 2443–2449.

    Article  CAS  Google Scholar 

  29. Bernhard, C. G.; Gemne, G.; Sallström, J. Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. J. Comp. Physiol. A1970, 2, 1–25.

    Google Scholar 

  30. Choi, H.J.; Choo, S.; Shin, J.H.; Kim, K.I.; Lee, H. Fabrication of superhydrophobic and oleophobic surfaces with overhang structure by reverse nanoimprint lithography. J. Phys. Chem. C2013, 117, 24354–24359.

    Article  CAS  Google Scholar 

  31. Clapham, P.B.; Hutley, M. C. Reduction of lens reflexion by the dmoth eye” principle. Nature1973, 244, 281–282.

    Article  Google Scholar 

  32. Hong, E.J.; Byeon, K.J.; Park, H.; Hwang, J.; Lee, H.; Choi, K.; Jung, G. Y. Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction. Mater. Sci. Eng. B2009, 163, 170–173.

    Article  CAS  Google Scholar 

  33. Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys.1976, 47, 4086–4089.

    Article  CAS  Google Scholar 

  34. Ghosh, D.S.; Chen, T.L.; Pruneri, V. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 2010, 96, 041109.

    Article  Google Scholar 

  35. Hwang, I.; Choi, D.; Lee, S.; hoon Seo, J.H.; Kim, K.H.; Yoon, I.; Seo, K. Enhancement of light absorption in photovoltaic devices using textured polydimethylsiloxane stickers. ACS Appl. Mater. Interfaces2017, 9, 21276–21282.

    Article  CAS  Google Scholar 

  36. Dong, J.; Zhao, Y.H.; Shi, J.J.; Wei, H. Y.; Xiao, J. Y.; Xu, X.; Luo, J.H.; Xu, J.; Li, D.M.; Luo, Y.H.; Meng, Q. B. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem. Commun. 2014, 50, 13381–13384.

    Article  CAS  Google Scholar 

  37. Zhou, Y.Y.; Kwun, J.; Garces, H.F.; Pang, S.P.; Padture, N. P. Observation of phase-retention behavior of the HC(NH2)2PbI3 black perovskite polymorph upon mesoporous TiO2 scaffolds. Chem. Commun.2016, 52, 7273–7275.

    Article  CAS  Google Scholar 

  38. Zhang, X.Q.; Wu, G.; Fu, W.F.; Qin, M.C.; Yang, W.T.; Yan, J.L.; Zhang, Z.Q.; Lu, X.H.; Chen, H. Z. Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater.2018, 8, 1702498.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (No. N0002310) funded by the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea), Creative Materials Discovery Program through the National Research Foundation of Korea(NRF) funded by Ministry of Science and ICT (No. NRF-2018M3D1A1058972) and the Materials and Components Technology Development Program program of MOTIE/KEIT (No. 10080352, Development of polymer-based adhesive light concentration film for solar cell with 85% light transmittance, 1m2 area).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yimhyun Jo or Heon Lee.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, S., Byun, M., Kim, M. et al. Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX. Nano Res. 13, 1156–1161 (2020). https://doi.org/10.1007/s12274-020-2763-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2763-3

Keywords

Navigation