Skip to main content
Log in

Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multimodal combinatorial therapy merges different modes of therapies in one platform, which can overcome several clinical challenges such as premature drug loss during blood circulation and significantly improve treatment efficiency. Here we report a combinatorial therapy nanoplatform that enables dual photothermal therapy and pH-stimulus-responsive chemotherapy. By super-assembly of mesoporous silica nanoparticles (MSN) with metal-phenolic networks (MPN), anti-cancer drugs can be loaded in the MSN matrix, while the outer MPN coating allows dual photothermal and pH-responsive properties. Upon near-infrared light irradiation, the MSN@MPN nanoplatform exhibits excellent photothermal effect, and demonstrates outstanding pH-triggered drug release property. In vitro cell experiments suggest the MSN@MPN system exhibits superior biocompatibility and can effectively kill tumor cells after loading anti-cancer drugs. Consequently, the MSN@MPN system shows promising prospects in clinical application for tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater.2013, 25, 1353–1359.

    CAS  Google Scholar 

  2. Fan, J. X.; Zheng, D. W.; Mei, W. W.; Chen, S.; Chen, S. Y.; Cheng, S. X.; Zhang, X. Z. A metal-polyphenol network coated nano-theranostic system for metastatic tumor treatments. Small2017, 13, 1702714.

    Google Scholar 

  3. Jiang, Y. J.; Liu, S. J.; Zhang, Y.; Li, H. C.; He, H.; Dai, J. T.; Jiang, T.; Ji, W. H.; Geng, D. Y.; Elzatahry, A. A. et al. Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Biomaterials2017, 115, 9–18.

    CAS  Google Scholar 

  4. Yang, J. P.; Shen, D. K.; Zhou, L.; Li, W.; Li, X. M.; Yao, C.; Wang, R.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater.2013, 25, 3030–3037.

    CAS  Google Scholar 

  5. Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater.2017, 29, 1603864.

    Google Scholar 

  6. Liu, Y.; Yin, J. J.; Nie, Z. H. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res.2014, 7, 1719–1730.

    CAS  Google Scholar 

  7. Chen, G. J.; Jaskula-Sztul, R.; Esquibel, C. R.; Lou, I.; Zheng, Q. F.; Dammalapati, A.; Harrison, A.; Eliceiri, K. W.; Tang, W. P.; Chen, H. et al. Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous NIR-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging. Adv. Funct. Mater.2017, 27, 1604671.

    Google Scholar 

  8. Lin, L. S.; Song, J. B.; Yang, H. H.; Chen, X. Y. Yolk-shell nanostructures: Design, synthesis, and biomedical applications. Adv. Mater.2018, 30, 1704639.

    Google Scholar 

  9. Zeng, J. Y.; Zhang, M. K.; Peng, M. Y.; Gong, D.; Zhang, X. Z. Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv. Funct. Mater.2018, 28, 1705451.

    Google Scholar 

  10. Poulose, A. C.; Veeranarayanan, S.; Mohamed, M. S.; Nagaoka, Y.; Aburto, R. R.; Mitcham, T.; Ajayan, P. M.; Bouchard, R. R.; Sakamoto, Y.; Yoshida, Y. et al. Multi-stimuli responsive Cu2S nano-crystals as trimodal imaging and synergistic chemo-photothermal therapy agents. Nanoscale2015, 7, 8378–8388.

    CAS  Google Scholar 

  11. Fang, S.; Lin, J.; Li, C. X.; Huang, P.; Hou, W. X.; Zhang, C. L.; Liu, J. J.; Huang, S. S.; Luo, Y. X.; Fan, W. P. et al. Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy. Small2017, 13, 1602580.

    Google Scholar 

  12. Gulzar, A.; Xu, J. T.; Xu, L. G.; Yang, P. P.; He, F.; Yang, D.; An, G. H.; Ansari, M. B. Redox-responsive UCNPs-DPA conjugated NGO-PEG-BPEI-DOX for imaging-guided PTT and chemotherapy for cancer treatment. Dalton Trans.2018, 47, 3921–3930.

    CAS  Google Scholar 

  13. Ping, Y.; Guo, J. L.; Ejima, H.; Chen, X.; Richardson, J. J.; Sun, H. L.; Caruso, F. pH-responsive capsules engineered from metal-phenolic networks for anticancer drug delivery. Small2015, 11, 2032–2036.

    CAS  Google Scholar 

  14. Hu, C. L.; Huang, P.; Zheng, Z.; Yang, Z. B.; Wang, X. L. A facile strategy to prepare an enzyme-responsive mussel mimetic coating for drug delivery based on mesoporous silica nanoparticles. Langmuir2017, 33, 5511–5518.

    CAS  Google Scholar 

  15. Zhu, X. L.; Huang, H. Q.; Zhang, Y. J.; Zhang, H. J.; Hou, L.; Zhang, Z. Z. Cit/CuS@Fe3O4-based and enzyme-responsive magnetic nano-particles for tumor chemotherapy, photothermal, and photodynamic therapy. J. Biomater. Appl.2017, 31, 1010–1025.

    CAS  Google Scholar 

  16. Su, Y.; Ojo, O. F.; Tsengam, I. K. M.; He, J. B.; McPherson, G. L.; John, V. T.; Valla, J. A. Thermoresponsive coatings on hollow particles with mesoporous shells serve as stimuli-responsive gates to species encapsulation and release. Langmuir2018, 34, 14608–14616.

    CAS  Google Scholar 

  17. Bathfield, M.; Reboul, J.; Cacciaguerra, T.; Lacroix-Desmazes, P.; Gérardin, C. Thermosensitive and drug-loaded ordered mesoporous silica: A direct and effective synthesis using PEO-b-PNIPAM block copolymers. Chem. Mater.2016, 28, 3374–3384.

    CAS  Google Scholar 

  18. Park, K.; Park, S. S.; Yun, Y. H.; Ha, C. S. Mesoporous silica nanoparticles functionalized with a redox-responsive biopolymer. J. Porous Mater.2017, 24, 1215–1225.

    CAS  Google Scholar 

  19. Li, C. X.; Zhang, Y. F.; Li, Z. M.; Mei, E. C.; Lin, J.; Li, F.; Chen, C. G.; Qing, X. L.; Hou, L. Y.; Xiong, L. L. et al. Light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater.2018, 30, 1706150.

    Google Scholar 

  20. Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem., Int. Ed.2005, 44, 5038–5044.

    CAS  Google Scholar 

  21. Li, S.; Wu, W.; Xiu, K. M.; Xu, F. J.; Li, Z. M.; Li, J. S. Doxorubicin loaded pH-responsive micelles capable of rapid intracellular drug release for potential tumor therapy. J. Biomed. Nanotechnol.2014, 10, 1480–1489.

    CAS  Google Scholar 

  22. Chen, T. C.; Wu, W.; Xiao, H.; Chen, Y. X.; Chen, M.; Li, J. S. Intelligent drug delivery system based on mesoporous silica nanoparticles coated with an ultra-pH-sensitive gatekeeper and poly(ethylene glycol). ACS Macro Lett.2016, 5, 55–58.

    CAS  Google Scholar 

  23. Wang, Z. T.; Huang, P.; Jacobson, O.; Wang, Z.; Liu, Y. J.; Lin, L. S.; Lin, J.; Lu, N.; Zhang, H. M.; Tian, R. et al. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano2016, 10, 3453–3460.

    CAS  Google Scholar 

  24. Lin, J.; Wang, M.; Hu, H.; Yang, X. Y.; Wen, B.; Wang, Z. T.; Jacobson, O.; Song, J. B.; Zhang, G. F.; Niu, G. et al. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection. Adv. Mater.2016, 28, 3273–3279.

    CAS  Google Scholar 

  25. Wang, D. D.; Dong, H. F.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W. H.; Wang, C. T.; Zhang, X. J. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano2018, 12, 5241–5252.

    CAS  Google Scholar 

  26. Liu, Y.; Zhen, W. Y.; Jin, L. H.; Zhang, S. T.; Sun, G. Y.; Zhang, T. Q.; Xu, X.; Song, S. Y.; Wang, Y. H.; Liu, J. H. et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano2018, 12, 4886–4893.

    CAS  Google Scholar 

  27. Meng, Z. Q.; Chao, Y.; Zhou, X. F.; Liang, C.; Liu, J. J.; Zhang, R.; Cheng, L.; Yang, K.; Pan, W.; Zhu, M. F. et al. Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS Nano2018, 12, 9412–9422.

    CAS  Google Scholar 

  28. Shi, D. L.; Cho, H. S.; Chen, Y.; Xu, H.; Gu, H. C.; Lian, J.; Wang, W.; Liu, G. K.; Huth, C.; Wang, L. M. et al. Fluorescent polystyrene-Fe3O4 composite nanospheres for in vivo imaging and hyperthermia. Adv. Mater.2009, 21, 2170–2173.

    CAS  Google Scholar 

  29. Yoo, D.; Jeong, H.; Noh, S. H.; Lee, J. H.; Cheon, J. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew. Chem., Int. Ed.2013, 52, 13047–13051.

    CAS  Google Scholar 

  30. Ding, Q.; Liu, D. F.; Guo, D. W.; Yang, F.; Pang, X. Y.; Che, R C.; Zhou, N. Z.; Xie, J.; Sun, J. F.; Huang, Z. H. et al. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials2017, 124, 35–46.

    CAS  Google Scholar 

  31. Wang, C.; Sun, W. J.; Wright, G.; Wang, A. Z.; Gu, Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv. Mater.2016, 28, 8912–8920.

    CAS  Google Scholar 

  32. Oberli, M. A.; Reichmuth, A. M.; Dorkin, J. R.; Mitchell, M. J.; Fenton, O. S.; Jaklenec, A.; Anderson, D. G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. NanoLett.2017, 17, 1326–1335.

    CAS  Google Scholar 

  33. Yu, G. T.; Rao, L.; Wu, H.; Yang, L. L.; Bu, L. L.; Deng, W. W.; Wu, L.; Nan, X. L.; Zhang, W. F.; Zhao, X. Z. et al. Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death. Adv. Funct. Mater.2018, 28, 1801389.

    Google Scholar 

  34. Phuengkham, H.; Song, C.; Um, S. H.; Lim, Y. T. Implantable synthetic immune niche for spatiotemporal modulation of tumor-derived immunosuppression and systemic antitumor immunity: Postoperative immunotherapy. Adv. Mater.2018, 30, 1706719.

    Google Scholar 

  35. Dong, Q.; Wang, X. W.; Hu, X. X.; Xiao, L. Q.; Zhang, L.; Song, L. J.; Xu, M. L.; Zou, Y. X.; Chen, L.; Chen, Z. et al. Simultaneous application of photothermal therapy and an anti-inflammatory prodrug using pyrene-aspirin-loaded gold nanorod graphitic nanocapsules. Angew. Chem., Int. Ed.2018, 57, 177–181.

    CAS  Google Scholar 

  36. Chen, S.; Lei, Q.; Qiu, W. X.; Liu, L. H.; Zheng, D. W.; Fan, J. X.; Rong, L.; Sun, Y. X.; Zhang, X. Z. Mitochondria-targeting “Nanoheater” for enhanced photothermal/chemo-therapy. Biomaterials2017, 117, 92–104.

    CAS  Google Scholar 

  37. Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett.2014, 14, 923–932.

    CAS  Google Scholar 

  38. Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater.2013, 25, 3144–3176.

    CAS  Google Scholar 

  39. Luo, Z.; Hu, Y.; Cai, K. Y.; Ding, X. W.; Zhang, Q.; Li, M. H.; Ma, X.; Zhang, B. L.; Zeng, Y. F.; Li, P. Z. et al Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials2014, 35, 7951–7962.

    CAS  Google Scholar 

  40. Schrand, A. M.; Schlager, J. J.; Dai, L. M.; Hussain, S. M. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat. Protoc.2010, 5, 744–757.

    CAS  Google Scholar 

  41. Rahim, M. A.; Ejima, H.; Cho, K. L.; Kempe, K.; Müllner, M.; Best, J. P.; Caruso, F. Coordination-driven multistep assembly of metal-polyphenol films and capsules. Chem. Mater.2014, 26, 1645–1653.

    CAS  Google Scholar 

  42. Ozawa, H.; Haga, M. A. Soft nano-wrapping on graphene oxide by using metal-organic network films composed of tannic acid and Fe ions. Phys. Chem. Chem. Phys.2015, 17, 8609–8613.

    CAS  Google Scholar 

  43. Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science2013, 341, 154–157.

    CAS  Google Scholar 

  44. Guo, J. L.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J. J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C. E. et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem., Int. Ed.2014, 53, 5546–5551.

    CAS  Google Scholar 

  45. Chen, W.; Zhong, P.; Meng, F. H.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Y. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. J. Control. Release2013, 169, 171–179.

    CAS  Google Scholar 

  46. Gerweck, L. E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res.1996, 56, 1194–1198.

    CAS  Google Scholar 

  47. Fan, J. X.; Zheng, D. W.; Rong, L.; Zhu, J. Y.; Hong, S.; Li, C.; Xu, Z. S.; Cheng, S. X.; Zhang, X. Z. Targeting epithelial-mesenchymal transition: Metal organic network nano-complexes for preventing tumor metastasis. Biomaterials2017, 139, 116–126.

    CAS  Google Scholar 

  48. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Chem. Phys. C2007, 111, 3636–3641.

    CAS  Google Scholar 

  49. Li, B.; Wang, Q.; Zou, R. J.; Liu, X. J.; Xu, K. B.; Li, W. Y.; Hu, J. Q. Cu7.2S4 nanocrystals: A novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale2014, 6, 3274–3282.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2019YFC1604600, 2017YFA0206901, 2017YFA0206900), the National Natural Science Foundation of China (Nos. 21705027, 21974029, and 81830052), the Construction project of Shanghai Key Laboratory of Molecular Imaging (No. 18DZ2260400), the Shanghai Municipal Education Commission (Class II Plateau Disciplinary Construction Program of Medical Technology of SUMHS, 2018–2020), the Australia National Health and Medical Research Council (NHMRC) (No. APP1163786), the Scientia Fellowship program at UNSW, the MCTL Visiting Fellowship Program, Shanghai Key Laboratory of Molecular Imaging (No. 18DZ2260400), the Natural Science Foundation of Shanghai, and the Recruitment Program of Global Experts of China and Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Kong.

Electronic Supplementary Material

12274_2020_2736_MOESM1_ESM.pdf

Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhou, S., Zeng, J. et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 13, 1013–1019 (2020). https://doi.org/10.1007/s12274-020-2736-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2736-6

Keywords

Navigation