Skip to main content
Log in

Temperature-dependent Raman spectroscopy studies of 1–5-layer WSe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, Raman measurements of 1–5-layer WSe2 supported on SiO2/Si in the temperature range of 133 to 533 K are reported. A physical model including both volume effect and temperature effect is used to quantitatively understand the nonlinear temperature dependence of \(\rm{E}_{2g}^1\) Raman mode. It is found this nonlinear dependence of Raman mode mainly originates from thermal expansion effect and three-phonon scattering. The former effect increases with an increase in number of layers, which is inverse for the latter effect. The temperature-dependent thermal expansion coefficients of 1–5-layer WSe2 are also obtained from Raman spectra. The full width at half maximum (FWHM) of \(\rm{E}_{2g}^1\) mode is also systematically studied both experimentally and theoretically in the temperature range of 133 to 413 K. It is found that the increase in FWHM of \(\rm{E}_{2g}^1\) mode originates from decaying of E12g phonon. This work will promote the understanding of anharmonic behaviors of phonons in WSe2 flakes with different thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett.2012, 12, 3788–3792.

    Article  CAS  Google Scholar 

  2. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol.2014, 9, 262–267.

    Article  CAS  Google Scholar 

  3. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol.2014, 9, 268–272.

    Article  CAS  Google Scholar 

  4. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol.2013, 8, 634–638.

    Article  CAS  Google Scholar 

  5. He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett.2014, 113, 026803.

    Article  Google Scholar 

  6. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    Article  CAS  Google Scholar 

  7. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics2016, 10, 216–226.

    Article  CAS  Google Scholar 

  8. Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B2011, 84, 153402.

    Article  Google Scholar 

  9. Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B2012, 85, 115317.

    Article  Google Scholar 

  10. Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C2013, 117, 9042–9047.

    Article  CAS  Google Scholar 

  11. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett.2008, 8, 902–907.

    Article  CAS  Google Scholar 

  12. Late, D. J.; Shirodkar, S. N.; Waghmare, U. V.; Dravid, V. P.; Rao, C. N. R. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2. ChemPhysChem2014, 15, 1592–1598.

    Article  CAS  Google Scholar 

  13. Najmaei, S.; Ajayan, P. M.; Lou, J. Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers. Nanoscale2013, 5, 9758–9763.

    Article  CAS  Google Scholar 

  14. Huang, X. T.; Gao, Y.; Yang, T. Q.; Ren, W. C.; Cheng, H. M.; Lai, T. S. Quantitative analysis of temperature dependence of Raman shift of monolayer WS2. Sci. Rep.2016, 6, 32236.

    Article  CAS  Google Scholar 

  15. Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. Acs Nano2013, 7, 791–797.

    Article  CAS  Google Scholar 

  16. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B2012, 85, 033305.

    Article  Google Scholar 

  17. Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B2013, 87, 165409.

    Article  Google Scholar 

  18. Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev.2015, 44, 2757–2785.

    Article  CAS  Google Scholar 

  19. Tonndorf, P.; Schmidt, R.; Bottger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express2013, 21, 4908–4916.

    Article  CAS  Google Scholar 

  20. Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale2013, 5, 9677–9683.

    Article  CAS  Google Scholar 

  21. Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent raman spectroscopy. Acs Nano2014, 8, 986–993.

    Article  CAS  Google Scholar 

  22. Lanzillo, N. A.; Birdwell, A. G.; Amani, M.; Crowne, F. J.; Shah, P. B.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. et al. Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett.2013, 103, 093102.

    Article  Google Scholar 

  23. Pawbake, A. S.; Pawar, M. S.; Jadkar, S. R.; Late, D. J. Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies. Nanoscale2016, 8, 3008–3018.

    Article  CAS  Google Scholar 

  24. Bhatt, S. V.; Deshpande, M. P.; Sathe, V.; Rao, R.; Chaki, S. H. Raman spectroscopic investigations on transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se) at high pressures and low temperature. J. Raman Spectrosc.2014, 45, 971–979.

    Article  CAS  Google Scholar 

  25. Hu, X.; Yasaei, P.; Jokisaari, J.; Öğüt, S.; Salehi-Khojin, A.; Klie, R. F. Mapping thermal expansion coefficients in freestanding 2D materials at the nanometer scale. Phys. Rev. Lett.2018, 120, 055902.

    Article  CAS  Google Scholar 

  26. Wang, Z. Y.; Zhou, Y. L.; Wang, X. Q.; Wang, F.; Sun, Q.; Guo, Z. X.; Jia, Y. Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide. Chin. Phys. B2015, 24, 026501.

    Article  Google Scholar 

  27. Çakır, D.; Peeters, F. M.; Sevik, C. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Appl. Phys. Lett.2014, 104, 203110.

    Article  Google Scholar 

  28. Gasanly, N. M.; Aydınlı, A.; Özkan, H.; Kocabaş, C. Temperature-dependent Raman scattering spectra of ε-GaSe layered crystal. Mater. Res. Bull.2002, 37, 169–176.

    Article  CAS  Google Scholar 

  29. Terrones, H.; López-Urias, F.; Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep.2013, 3, 1549.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported the National Key R&D Program of China (Nos. 2017YFF0108900, 2016YFF0203802, and 2017YFD080120203), the Dalian Youth Science and Technology Star Project (No. 2017RQ138), the project from Liaoning Education Department (No. JDL2019015), the National Natural Science Foundation of China (Nos. 51872058 and 21904029) and the Fundamental Research Funds for Central Universities (No. HIT. NSRIF. 2019071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingying Wang or Mingqiang Zou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Y., Jiang, J. et al. Temperature-dependent Raman spectroscopy studies of 1–5-layer WSe2. Nano Res. 13, 591–595 (2020). https://doi.org/10.1007/s12274-020-2669-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2669-0

Keywords

Navigation