Skip to main content
Log in

Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical water splitting (EWS) is a highly clean and efficient method for high-purity hydrogen production. Unfortunately, EWS suffers from the sluggish and complex oxygen evolution reaction (OER) kinetics at anode. At present, the efficient, stable, and low-cost non-precious metal based OER electrocatalyst is still a great and long-term challenge for the future industrial application of EWS technology. Herein, we develop a simple and fast approach for gram-scale synthesis of flower-like cobalt-based layered double hydroxides nanosheet aggregates by ultrasonic synthesis, which show outstanding electrocatalytic performance for the oxygen evolution reaction in alkaline media, such as preeminent stability, small overpotential of 300 mV at 10 mA·cm−2 and small Tafel slope of 110 mV·dec−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater.2019, 9, 1803369.

    Google Scholar 

  2. Guo, F. F.; Wu, Y. Y.; Chen, H.; Liu, Y. P.; Yang, L.; Ai, X.; Zou, X. X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci.2019, 12, 684–692.

    CAS  Google Scholar 

  3. Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; Xiao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem., Int. Ed.2019, 58, 4923–4928.

    CAS  Google Scholar 

  4. Wang, Z. C.; Xu, W. J.; Chen, X. K.; Peng, Y. H.; Song, Y. Y.; Lv, C. X.; Liu, H. L.; Sun, J. W.; Yuan, D.; Li, X. Y. et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater.2019, 29, 1902875.

    Google Scholar 

  5. Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal.2018, 5, 2236–2241.

    Google Scholar 

  6. Wu, J. C.; Guo, Y. Q.; Liu, H. F.; Zhao, J. Y.; Zhou, H. D.; Chu, W. S.; Wu, C. Z. Room-temperature ligancy engineering of perovskite electrocatalyst for enhanced electrochemical water oxidation. Nano Res.2019, 12, 2296–2301.

    CAS  Google Scholar 

  7. Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater.2019, 31, 1805127.

    Google Scholar 

  8. Zou, H. Y.; He, B. W.; Kuang, P. Y.; Yu, J. G.; Fan, K. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces2018, 10, 22311–22319.

    CAS  Google Scholar 

  9. Zhang, R. R.; Zhang, Y. C.; Pan, L.; Shen, G. Q.; Mahmood, N.; Ma, Y. H.; Shi, Y.; Jia, W. Y.; Wang, L.; Zhang, X. W. et al. Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catal.2018, 5, 3803–3811.

    Google Scholar 

  10. Moon, G. H.; Yu, M. Q.; Chan, C. K.; Tüysüz, H. Highly active cobalt-based electrocatalysts with facile incorporation of dopants for the oxygen evolution reaction. Angew. Chem., Int. Ed.2019, 58, 3491–3495.

    CAS  Google Scholar 

  11. Cao, J. H.; Lei, C. J.; Yang, J.; Cheng, X. D.; Li, Z. J.; Yang, B.; Zhang, X. W.; Lei, L. C.; Hou, Y.; Ostrikov, K. An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction. J. Mater. Chem. A2018, 6, 18877–18883.

    CAS  Google Scholar 

  12. Xu, S. C.; Lv, C. C.; He, T.; Huang, Z. P.; Zhang, C. Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A2019, 7, 7526–7532.

    CAS  Google Scholar 

  13. Xu, Y. X.; Li, B.; Zheng, S. S.; Wu, P.; Zhan, J. Y.; Xue, H. G.; Xu, Q.; Pang, H. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J. Mater. Chem. A2018, 6, 22070–22076.

    CAS  Google Scholar 

  14. Shen, Y.; Guo, S. G.; Du, F.; Yuan, X. B.; Zhang, Y. T.; Hu, J. Q.; Shen, Q.; Luo, W. J.; Alsaedi, A.; Hayat, T. et al. Prussian blue analogue-derived Ni and Co bimetallic oxide nanoplate arrays block-built from porous and hollow nanocubes for the efficient oxygen evolution reaction. Nanoscale2019, 11, 11765–11773.

    CAS  Google Scholar 

  15. Alia, S. M.; Shulda, S.; Ngo, C.; Pylypenko, S.; Pivovar, B. S. Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts. ACS Catal.2018, 5, 2111–2120.

    Google Scholar 

  16. Zhang, Y. K.; Wu, C. Q.; Jiang, H. L.; Lin, Y. X.; Liu, H. J.; He, Q.; Chen, S. M.; Duan, T.; Song, L. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv. Mater.2018, 30, 1707522.

    Google Scholar 

  17. Zhang, Q.; Kusada, K.; Wu, D. S.; Ogiwara, N.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Honma, T. et al. Solid-solution alloy nanoparticles of a combination of immiscible Au and Ru with a large gap of reduction potential and their enhanced oxygen evolution reaction performance. Chem. Sci.2019, 10, 5133–5137.

    CAS  Google Scholar 

  18. Paoli, E. A.; Masini, F.; Frydendal, R.; Deiana, D.; Schlaup, C.; Malizia, M.; Hansen, T. W.; Horch, S.; Stephens, I. E. L.; Chorkendorff, I. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem. Sci.2015, 6, 190–196.

    CAS  Google Scholar 

  19. Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal.2019, 2, 304–313.

    CAS  Google Scholar 

  20. Zhao, Y.; Bai, J.; Wu, X. R.; Chen, P.; Jin, P. J.; Yao, H. C.; Chen, Y. Atomically ultrathin RhCo alloy nanosheet aggregates for efficient water electrolysis in broad pH range. J. Mater. Chem. A2019, 7, 16437–16446.

    CAS  Google Scholar 

  21. Bai, J.; Han, S. H.; Peng, R. L.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Ultrathin rhodium oxide nanosheet nanoassemblies: Synthesis, morphological stability, and electrocatalytic application. ACS Appl. Mater. Interfaces2017, 9, 17195–17200.

    CAS  Google Scholar 

  22. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev.2017, 46, 337–365.

    CAS  Google Scholar 

  23. Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy2017, 37, 136–157.

    CAS  Google Scholar 

  24. Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater.2019, 9, 1803358.

    Google Scholar 

  25. You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res.2018, 51, 1571–1580.

    CAS  Google Scholar 

  26. Fang, M.; Dong, G. F.; Wei, R. J.; Ho, J. C. Hierarchical nanostructures: Design for sustainable water splitting. Adv. Energy Mater.2017, 7, 1700559.

    Google Scholar 

  27. Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A2016, 4, 17587–17603.

    CAS  Google Scholar 

  28. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater.2016, 25, 215–230.

    Google Scholar 

  29. Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater.2019, 31, 1901174.

    Google Scholar 

  30. Chen, C. F.; Wu, A. P.; Yan, H. J.; Xiao, Y. L.; Tian, C. G.; Fu, H. G. Trapping [PMo12O40]3− clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem. Sci.2018, 9, 4746–4755.

    CAS  Google Scholar 

  31. Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res.2019, 12, 1605–1611.

    CAS  Google Scholar 

  32. Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res.2019, 12, 1327–1331.

    CAS  Google Scholar 

  33. Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater.2019, 31, 1808043.

    Google Scholar 

  34. Xu, M.; Wei, M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications. Adv. Funct. Mater.2018, 28, 1802943.

    Google Scholar 

  35. Yu, J. F.; Wang, Q.; O’Hare, D.; Sun, L. Y. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev.2017, 46, 5950–5974.

    CAS  Google Scholar 

  36. Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev.2014, 43, 7040–7066.

    CAS  Google Scholar 

  37. Patel, R.; Park, J. T.; Patel, M.; Dash, J. K.; Gowd, E. B.; Karpoormath, R.; Mishra, A.; Kwak, J.; Kim, J. H. Transition-metal-based layered double hydroxides tailored for energy conversion and storage. J. Mater. Chem. A2018, 6, 12–29.

    CAS  Google Scholar 

  38. Li, P. S.; Duan, X. X.; Kuang, Y.; Li, Y. P.; Zhang, G. X.; Liu, W.; Sun, X. M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater.2018, 8, 1703341.

    Google Scholar 

  39. Liu, R.; Wang, Y. Y.; Liu, D. D.; Zou, Y. Q.; Wang, S. Y. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater.2017, 29, 1701546.

    Google Scholar 

  40. Liu, Z. J.; Dong, C. L.; Huang, Y. C.; Cen, J. J.; Yang, H. T.; Chen, X. B.; Tong, X.; Su, D.; Wang, Y. Y.; Wang, S. Y. Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: An efficient electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A2019, 7, 14483–14488.

    CAS  Google Scholar 

  41. Zhou, P.; He, J. Y.; Zou, Y. Q.; Wang, Y. Y.; Xie, C.; Chen, R.; Zang, S. Q.; Wang, S. Y. Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction. Sci. China Chem.2019, 62, 1365–1370.

    CAS  Google Scholar 

  42. Chen, W. X.; Zhang, Y. W.; Huang, R.; Zhou, Y. M.; Wu, Y. J.; Hu, Y. J.; Ostrikov, K. Ni-Co hydroxide nanosheets on plasma-reduced Co-based metal-organic nanocages for electrocatalytic water oxidation. J. Mater. Chem. A2019, 7, 4950–4959.

    CAS  Google Scholar 

  43. Chen, L. Y.; Guo, Y. T.; Wang, H. F.; Gu, Z. Z.; Zhang, Y. Y.; Li, X. Z.; Wang, H.; Duan, C. Y. Imidazolate-mediated assembled structures of Co-LDH sheets for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A2018, 6, 4636–4641.

    CAS  Google Scholar 

  44. Xu, X.; Zhong, Z.; Yan, X. M.; Kang, L. T.; Yao, J. N. Cobalt layered double hydroxide nanosheets synthesized in water-methanol solution as oxygen evolution electrocatalysts. J. Mater. Chem. A2018, 6, 5999–6006.

    Google Scholar 

  45. Yang, J.; Yu, C.; Hu, C.; Wang, M.; Li, S. F.; Huang, H. W.; Bustillo, K.; Han, X. T.; Zhao, C. T.; Guo, W. et al. Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater.2018, 28, 1803272.

    Google Scholar 

  46. Zhou, P.; Wang, Y. Y.; Xie, C.; Chen, C.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chem. Commun.2017, 53, 11778–11781.

    CAS  Google Scholar 

  47. Zhou, L. X.; Guo, M. C.; Li, Y.; Gu, Q.; Zhang, W. Q.; Li, C.; Xie, F. Y.; Lin, D. M.; Zheng, Q. J. One-step synthesis of wire-in-plate nanostructured materials made of CoFe-LDH nanoplates coupled with Co(OH)2 nanowires grown on a Ni foam for a high-efficiency oxygen evolution reaction. Chem. Commun.2019, 55, 4218–4221.

    CAS  Google Scholar 

  48. Rajeshkhanna, G.; Singh, T. I.; Kim, N. H.; Lee, J. H. Remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities with trace-level Fe doping in Ni- and Co-layered double hydroxides for overall water-splitting. ACS Appl. Mater. Interfaces2018, 10, 42453–42468.

    CAS  Google Scholar 

  49. Li, Y.; Zhang, L.; Xiang, X.; Yan, D. P.; Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J. Mater. Chem. A2014, 2, 13250–13258.

    CAS  Google Scholar 

  50. Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed.2017, 56, 5867–5871.

    CAS  Google Scholar 

  51. Yang, Q.; Li, T.; Lu, Z. Y.; Sun, X. M.; Liu, J. F. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale2014, 6, 11789–11794.

    CAS  Google Scholar 

  52. Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc.2014, 136, 16481–16484.

    CAS  Google Scholar 

  53. Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc.2015, 137, 5590–5595.

    CAS  Google Scholar 

  54. He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed.2017, 56, 3897–3900.

    CAS  Google Scholar 

  55. Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D. R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale2013, 5, 11770–11775.

    CAS  Google Scholar 

  56. Raj, S.; Anantharaj, S.; Kundu, S.; Roy, P. In situ Mn-doping-promoted conversion of Co(OH)2 to Co3O4 as an active electrocatalyst for oxygen evolution reaction. ACS Sustainable Chem. Eng.2019, 7, 9690–9698.

    CAS  Google Scholar 

  57. Wang, K.; Liu, C. H.; Wang, W. C.; Mitsuzaki, N.; Chen, Z. D. Synthesis and electrochemical performance of nickel-cobalt oxide/carbon nanocomposites for use in efficient oxygen evolution reaction. J. Mater. Sci. Mater. Electron.2019, 30, 4144–4151.

    CAS  Google Scholar 

  58. Tong, Y.; Yu, X. W.; Wang, H. Y.; Yao, B. W.; Li, C.; Shi, G. Q. Trace level Co-N doped graphite foams as high-performance self-standing electrocatalytic electrodes for hydrogen and oxygen evolution. ACS Catal.2018, 8, 4637–4644.

    CAS  Google Scholar 

  59. Zhang, B. X.; Zhang, J. L.; Tan, X. N.; Tan, D. X.; Shi, J. B.; Zhang, F. Y.; Liu, L. F.; Su, Z. Z.; Han, B. X.; Zheng, L. R. et al. One-step synthesis of ultrathin α-Co(OH)2 nanomeshes and their high electrocatalytic activity toward the oxygen evolution reaction. Chem. Commun.2018, 54, 4045–4048.

    CAS  Google Scholar 

  60. Yuan, X. T.; Wang, X.; Riaz, M. S.; Dong, C. L.; Zhang, Z.; Huang, F. Q. Efficient catalysts for oxygen evolution derived from cobalt-based alloy nanochains. Catal. Sci. Technol.2018, 8, 2427–2433.

    CAS  Google Scholar 

  61. Malik, B.; Anantharaj, S.; Karthick, K.; Pattanayak, D. K.; Kundu, S. Magnetic copt nanoparticle-decorated ultrathin Co(OH)2 nanosheets: An efficient bi-functional water splitting catalyst. Catal. Sci. Technol.2017, 7, 2486–2497.

    CAS  Google Scholar 

  62. Liu, H.; Ma, F. X.; Xu, C. Y.; Yang, L.; Du, Y.; Wang, P. P.; Yang, S.; Zhen, L. Sulfurizing-induced hollowing of Co9S8 microplates with nanosheet units for highly efficient water oxidation. ACS Appl. Mater. Interfaces2017, 9, 11634–11641.

    CAS  Google Scholar 

  63. Shi, Y. M.; Wang, Y. T.; Yu, Y. F.; Niu, Z. Q.; Zhang, B. N-doped graphene wrapped hexagonal metallic cobalt hierarchical nanosheet as a highly efficient water oxidation electrocatalyst. J. Mater. Chem. A2017, 5, 8897–8902.

    CAS  Google Scholar 

  64. Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett.2015, 15, 1421–1427.

    CAS  Google Scholar 

  65. Sun, S. S.; Lv, C. D.; Hong, W. Z.; Zhou, X.; Wu, F. G.; Chen, G. Dual tuning of composition and nanostructure of hierarchical hollow nanopolyhedra assembled by NiCo-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution. ACS Appl. Energy Mater.2019, 2, 312–319.

    CAS  Google Scholar 

  66. Liu, Y. Q.; Zhang, M.; Hu, D.; Li, R. Q.; Hu, K.; Yan, K. Ar plasma-exfoliated ultrathin NiCo-layered double hydroxide nanosheets for enhanced oxygen evolution. ACS Appl. Energy Mater.2019, 2, 1162–1168.

    CAS  Google Scholar 

  67. Zhang, T.; Hang, L. F.; Sun, Y. Q.; Men, D. D.; Li, X. Y.; Wen, L. L.; Lyu, X. J.; Li, Y. Hierarchical hetero-Ni3Se4@NiFe LDH micro/ nanosheets as efficient bifunctional electrocatalysts with superior stability for overall water splitting. Nanoscale Horiz.2019, 4, 1132–1138.

    CAS  Google Scholar 

  68. Morales, D. M.; Barwe, S.; Vasile, E.; Andronescu, C.; Schuhmann, W. Enhancing electrocatalytic activity through liquid-phase exfoliation of NiFe layered double hydroxide intercalated with metal phthalocyanines in the presence of graphene. ChemPhysChem, in press, DOI: https://doi.org/10.1002/cphc.201900577.

    CAS  Google Scholar 

  69. Zhou, J. Q.; Yu, L.; Zhu, Q. C.; Huang, C. Q.; Yu, Y. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core-shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A2019, 7, 18118–18125.

    CAS  Google Scholar 

  70. Chen, S. C.; Kang, Z. X.; Hu, X.; Zhang, X. D.; Wang, H.; Xie, J. F.; Zheng, X. S.; Yan, W. S.; Pan, B. C.; Xie, Y. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv. Mater.2017, 29, 1701687.

    Google Scholar 

  71. Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal.2018, 5, 1913–1920.

    Google Scholar 

  72. Liu, W.; Liu, H.; Dang, L. N.; Zhang, H. X.; Wu, X. L.; Yang, B.; Li, Z. J.; Zhang, X. W.; Lei, L. C.; Jin, S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv. Funct. Mater.2017, 27, 1603904.

    Google Scholar 

  73. Zhang, J. F.; Hu, Y. C.; Liu, D. L.; Yu, Y.; Zhang, B. Enhancing oxygen evolution reaction at high current densities on amorphous-like Ni-Fe-S ultrathin nanosheets via oxygen incorporation and electrochemical tuning. Adv. Sci.2017, 4, 1600343.

    Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JM5093), the Fundamental Research Funds for the Central Universities (Nos. GK201702009 and GK201901002), and 111 Project (No. B14041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziwei Deng or Yu Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TJ., Liu, X., Li, Y. et al. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res. 13, 79–85 (2020). https://doi.org/10.1007/s12274-019-2575-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2575-5

Keywords

Navigation