Skip to main content
Log in

Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Environmental deterioration, especially water pollution, is widely dispersed and could affect the quality of people’s life at large. Though the sewage treatment plants are constructed to meet the demands of cities, distributed treatment units are still in request for the supplementary of centralized purification beyond the range of plants. Electrochemical degradation can reduce organic pollution to some degree, but it has to be powered. Triboelectric nanogenerator (TENG) is a newly-invented technology for low-frequency mechanical energy harvesting. Here, by integrating a rotary TENG (R-TENG) as electric power source with an electrochemical cell containing a modified graphite felt cathode for hydrogen peroxide (H2O2) along with hydroxyl radical (•OH) generation by Fenton reaction and a platinum sheet anode for active chlorine generation, a self-powered electrochemical system (SPECS) was constructed. Under the driven of mechanical energy or wind flow, such SPECS can efficiently degrade dyes after power management in neutral condition without any O2 aeration. This work not only provides a guideline for optimizing self-powered electrochemical reaction, but also displays a strategy based on the conversion from distributed mechanical energy to chemical energy for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy2012, 1, 328–334.

    CAS  Google Scholar 

  2. Wang, Z. L. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics-A recall on the original thoughts for coining these fields. Nano Energy2018, 54, 477–483.

    CAS  Google Scholar 

  3. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-Principles, problems and perspectives. Faraday Discuss.2014, 176, 447–458.

    CAS  Google Scholar 

  4. Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater.2019, 9, 1802906.

    Google Scholar 

  5. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today2017, 20, 74–82.

    Google Scholar 

  6. Shao, J. J.; Willatzen, M.; Jiang, T.; Tang, W.; Chen, X. Y.; Wang, J.; Wang, Z. L. Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current. Nano Energy2019, 59, 380–389.

    CAS  Google Scholar 

  7. Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun.2019, 10, 1426.

    Google Scholar 

  8. Liang, X.; Jiang, T.; Liu, G. X.; Xiao, T. X.; Xu, L.; Li, W.; Xi, F. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater.2019, 29, 1807241.

    CAS  Google Scholar 

  9. Zhang, C.; Wang, Z. L. Tribotronics-A new field by coupling triboelectricity and semiconductor. Nano Today2016, 11, 521–536.

    CAS  Google Scholar 

  10. Yin, W. L.; Xie, Y. D.; Long, J.; Zhao, P. F.; Chen, J. K.; Luo, J. K.; Wang, X. Z.; Dong, S. R. A self-power-transmission and non-contact-reception keyboard based on a novel resonant triboelectric nanogenerator (R-TENG). Nano Energy2018, 50, 16–24.

    CAS  Google Scholar 

  11. Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res.2018, 11, 4313–4322.

    CAS  Google Scholar 

  12. Liu, Z. R.; Nie, J. H.; Miao, B.; Li, J. D.; Cui, Y. B.; Wang, S.; Zhang, X. D.; Zhao, G. R.; Deng, Y. B.; Wu, Y. H. et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater.2019, 31, 1807795.

    Google Scholar 

  13. Gao, S. Y.; Wang, M.; Chen, Y.; Tian, M.; Zhu, Y. Z.; Wei, X. J.; Jiang, T. An advanced electro-Fenton degradation system with triboelectric nanogenerator as electric supply and biomass-derived carbon materials as cathode catalyst. Nano Energy2018, 45, 21–27.

    CAS  Google Scholar 

  14. Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res.2018, 11, 1873–1882.

    CAS  Google Scholar 

  15. Yeh, M. H.; Guo, H. Y.; Lin, L.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. Rolling friction enhanced free-standing triboelectric nanogenerators and their applications in self-powered electrochemical recovery systems. Adv. Funct. Mater.2016, 26, 1054–1062.

    CAS  Google Scholar 

  16. Chen, S. W.; Wang, N.; Ma, L.; Li, T.; Willander, M.; Jie, Y.; Cao, X.; Wang, Z. L. Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process. Adv. Energy Mater.2016, 6, 1501778.

    Google Scholar 

  17. Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Selfpowered water splitting using flowing kinetic energy. Adv. Mater.2015, 27, 272–276.

    CAS  Google Scholar 

  18. Su, Y. J.; Yang, Y.; Zhang, H. L.; Xie, Y. N.; Wu, Z. M.; Jiang, Y. D.; Fukata, N.; Bando, Y.; Wang, Z. L. Enhanced photodegradation of methyl orange with TiO2 nanoparticles using a triboelectric nanogenerator. Nanotechnology2013, 24, 295401.

    Google Scholar 

  19. Yu, X.; Han, X.; Zhao, Z. H.; Zhang, J.; Guo, W. B.; Pan, C. F.; Li, A. X.; Liu, H.; Wang, Z. L. Hierarchical TiO2 nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: A highly efficient photoelectrocatalytic device entirely based on renewable energy. Nano Energy2015, 11, 19–27.

    CAS  Google Scholar 

  20. Wei, A. M.; Xie, X. K.; Wen, Z.; Zheng, H. C.; Lan, H. W.; Shao, H. Y.; Sun, X. H.; Zhong, J.; Lee, S. T. Triboelectric nanogenerator driven self-powered photoelectrochemical water splitting based on hematite photoanodes. ACS Nano2018, 12, 8625–8632.

    CAS  Google Scholar 

  21. Feng, Y. W.; Ling, L. L.; Nie, J. H.; Han, K.; Chen, X. Y.; Bian, Z. F.; Li, H. X.; Wang, Z. L. Self-powered electrostatic filter with enhanced photocatalytic degradation of formaldehyde based on built-in triboelectric nanogenerators. ACS Nano2017, 11, 12411–12418.

    CAS  Google Scholar 

  22. Liu, W. X.; Wu, J. Y.; He, W.; Xu, F. L. A review on perfluoroalkyl acids studies: Environmental behaviors, toxic effects, and ecological and health risks. Ecosyst. Health Sustain.2019, 5, 1–19.

    Google Scholar 

  23. Deng, W. J.; Li, N.; Ying, G. G. Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong. Environ. Geochem. Health2018, 40, 2191–2203.

    CAS  Google Scholar 

  24. Dominguez, C. M.; Oturan, N.; Romero, A.; Santos, A.; Oturan, M. A. Optimization of electro-Fenton process for effective degradation of organochlorine pesticide lindane. Catal. Today2018, 313, 196–202.

    CAS  Google Scholar 

  25. Zhou, M. H.; Yu, Q. H.; Lei, L. C.; Barton, G. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep. Purif. Technol.2007, 57, 380–387.

    CAS  Google Scholar 

  26. An, S. F.; Zhang, G. H.; Wang, T. W.; Zhang, W. N.; Li, K. Y.; Song, C. S.; Miller, J. T.; Miao, S.; Wang, J. H.; Guo, X. W. High-density ultra-small clusters and single-atom fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano2018, 12, 9441–9450.

    CAS  Google Scholar 

  27. Zhang, Z. H.; Meng, H. S.; Wang, Y. J.; Shi, L. M.; Wang, X.; Chai, S. N. Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in electro-Fenton process. Electrochim. Acta2018, 260, 112–120.

    CAS  Google Scholar 

  28. Schwarz, H. A.; Dodson, R. W. Equilibrium between hydroxyl radicals and thallium (II) and the oxidation potential of hydroxyl(aq). J. Phys. Chem.1984, 88, 3643–3647.

    CAS  Google Scholar 

  29. Rositano, J.; Nicholson, B. C.; Pieronne, P. Destruction of cyanobacterial toxins by ozone. Ozone: Sci. Eng.1998, 20, 223–238.

    CAS  Google Scholar 

  30. Szpyrkowicz, L.; Kaul, S. N.; Neti, R. N.; Satyanarayan, S. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Res.2005, 39, 1601–1613.

    CAS  Google Scholar 

  31. Ma, X. J.; Zhou, M. H. A comparative study of azo dye decolorization by electro-Fenton in two common electrolytes. J. Chem. Technol. Biotechnol.2009, 84, 1544–1549.

    CAS  Google Scholar 

  32. Yu, F. K.; Zhou, M. H.; Yu, X. M. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochim. Acta2015, 163, 182–189.

    CAS  Google Scholar 

  33. Sellers, R. M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst1980, 105, 950–954.

    CAS  Google Scholar 

  34. Barreto, J. C.; Smith, G. S.; Strobel, N. H. P.; McQuillin, P. A.; Miller, T. A. Terephthalic acid: A dosimeter for the detection of hydroxyl radicals in vitro. Life Sci., 1995, 56, PL89–PL 96.

    CAS  Google Scholar 

  35. Wen, S. L.; Niu, Z. Y.; Zhang, Z.; Li, L. H.; Chen, Y. C. In-situ synthesis of 3D GA on titanium wire as a binder-free electrode for electro-Fenton removing of EDTA-Ni. J. Hazard. Mater.2018, 341, 128–137.

    Google Scholar 

  36. Wang, Y.; Liu, Y. H.; Liu, T. F.; Song, S. Q.; Gui, X. C.; Liu, H.; Tsiakaras, P. Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode. Appl. Catal., B.2014, 156, 1–7.

    Google Scholar 

  37. Agladze, G. R.; Tsurtsumia, G. S.; Jung, B. I.; Kim, J. S.; Gorelishvili, G. Comparative study of hydrogen peroxide electro-generation on gas-diffusion electrodes in undivided and membrane cells. J. Appl. Electrochem.2007, 37, 375–383.

    CAS  Google Scholar 

  38. de Araújo, D. M.; Cotillas, S.; Sáez, C.; Cañizares, P.; Martínez-Huitle, C. A.; Rodrigo, M. A. Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. J. Electroanal. Chem.2015, 757, 144–149.

    Google Scholar 

  39. Thiam, A.; Salazar, R.; Brillas, E.; Sirés, I. Electrochemical advanced oxidation of carbofuran in aqueous sulfate and/or chloride media using a flow cell with a RuO2-based anode and an air-diffusion cathode at pre-pilot scale. Chem. Eng. J.2018, 335, 133–144.

    CAS  Google Scholar 

  40. Yu, K.; Yang, S. G.; He, H.; Sun, C.; Gu, C. G.; Ju, Y. M. Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: Pathways and mechanism. J. Phys. Chem. A2009, 113, 10024–10032.

    CAS  Google Scholar 

  41. Fu, H. B.; Zhang, S. C.; Xu, T. G.; Zhu, Y. F.; Chen, J. M. Photocatalytic degradation of rhb by fluorinated Bi2WO6 and distributions of the intermediate products. Environ. Sci. Technol.2008, 42, 2085–2091.

    CAS  Google Scholar 

  42. Chen, Y.; Wang, M.; Tian, M.; Zhu, Y. Z.; Wei, X. J.; Jiang, T.; Gao, S. Y. An innovative electro-Fenton degradation system self-powered by triboelectric nanogenerator using biomass-derived carbon materials as cathode catalyst. Nano Energy2017, 42, 314–321.

    CAS  Google Scholar 

  43. Qin, H. F.; Cheng, G.; Zi, Y. L.; Gu, G. Q.; Zhang, B.; Shang, W. Y.; Yang, F.; Yang, J. J.; Du, Z. L.; Wang, Z. L. High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater.2018, 28, 1805216.

    Google Scholar 

  44. Li, X. H.; Jin, X. D.; Zhao, N. N.; Angelidaki, I.; Zhang, Y. F. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system. Water Res.2017, 119, 67–72.

    CAS  Google Scholar 

  45. Yang, Y.; Zhang, H. L.; Lee, S.; Kim, D.; Hwang, W.; Wang, Z. L. Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett.2013, 13, 803–808.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Technology R&D Program of China (No. 2016YFA0202704), Beijing Municipal Science & Technology Commission (Nos. Z171100000317001, Z171100002017017, and Y3993113DF), the National Natural Science Foundation of China (Nos. 51432005, 5151101243, 51561145021, and 21761142011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Cao, Hexing Li or Zhong Lin Wang.

Electronic Supplementary Material

Supplementary material, approximately 1.74 MB.

12274_2019_2506_MOESM2_ESM.pdf

Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Han, K., Jiang, T. et al. Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment. Nano Res. 12, 2729–2735 (2019). https://doi.org/10.1007/s12274-019-2506-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2506-5

Keywords

Navigation