Skip to main content
Log in

Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

When the dimensionality of layered compounds decreases to the physical limit, ultimate two-dimensional (2D) anisotropy and/or quantum confinement effects may lead to extraordinary physicochemical attributes. Here, we report single-layer Rh nanosheets (NSs) exhibiting ultrahigh peroxidase-like activity, far exceeding that of horseradish peroxidase (HRP) and of most known layered nanomaterial-based peroxidase mimics. Considering per NS as an active subunit, the Rh NSs displayed a catalytic rate constant (Kcat) as high as 4.45 × 105 s–1 to H2O2, two orders of magnitude higher than those of HRP and Rh nanoparticles. The high atom efficiency of the Rh NSs can be attributed to the full exposure of surface-active Rh atoms, which greatly facilitates electron transfer and formation of superoxide anions, representing reactive oxygen species in the catalytic process. As a proof-of-concept application, the Rh NSs were successfully used as peroxidase mimics for the colorimetric detection of H2O2 and xanthine, with high sensitivity and selectivity. Moreover, a simple, rapid, and sensitive Rh-based paper sensor for ascorbic acid was also developed. In summary, this work provides a novel example of single-layer metallic NSs for biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  Google Scholar 

  2. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  Google Scholar 

  3. Shi, W. B.; Wang, Q. L.; Long, Y. J.; Cheng, Z. L.; Chen, S. H.; Zheng, H. Z.; Huang, Y. M. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695–6697.

    Article  Google Scholar 

  4. Cai, S. F.; Jia, X. H.; Han, Q. S.; Yan, X. Y.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.

    Article  Google Scholar 

  5. Liu, B. W.; Huang, Z. C.; Liu, J. W. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: Rivaling protein enzymes and ultrasensitive F-detection. Nanoscale 2016, 8, 13562–13567.

    Article  Google Scholar 

  6. Wang, G. L.; Xu, X. F.; Qiu, L.; Dong, Y. M.; Li, Z, J.; Zhang, C. Dual responsive enzyme mimicking activity of AgX (X = Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS Appl. Mater. Interfaces 2014, 6, 6434–6442.

    Article  Google Scholar 

  7. Dutta, A. K.; Maji, S. K.; Srivastava, D. N.; Mondal, A.; Biswas, P.; Paul, P.; Adhikary, B. Synthesis of FeS and FeSe nanoparticles from a single source precursor: A study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl. Mater. Interfaces 2012, 4, 1919–1927.

    Article  Google Scholar 

  8. Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.

    Article  Google Scholar 

  9. Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

    Article  Google Scholar 

  10. Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419.

    Article  Google Scholar 

  11. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  12. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Article  Google Scholar 

  13. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  Google Scholar 

  14. Chimene, D.; Alge, D. L.; Gaharwar, A. K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015, 27, 7261–7284.

    Article  Google Scholar 

  15. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  Google Scholar 

  16. Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.

    Article  Google Scholar 

  17. Wei, J. P.; Chen, X. L.; Shi, S. G.; Mo, S. G.; Zheng, N. F. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015, 7, 19018–19026.

    Article  Google Scholar 

  18. Yan, X.; Song, Y.; Wu, X. L.; Zhu, C. Z.; Su, X. G.; Du, D.; Lin, Y. H. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 2017, 9, 2317–2323.

    Article  Google Scholar 

  19. Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing the diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.

    Article  Google Scholar 

  20. Lin, T. R.; Zhong, L. S.; Song, Z. P.; Guo, L. Q.; Wu, H. Y.; Guo, Q. Q.; Chen, Y.; Fu, F. F.; Chen, G. N. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens. Bioelectron. 2014, 62, 302–307.

    Article  Google Scholar 

  21. Wu, X. J.; Chen, T. M.; Wang, J. X. Yang, G. W. Few-layered MoSe2 nanosheets as an efficient peroxidase nanozyme for highly sensitive colorimetric detection of H2O2 and xanthine. J. Mater. Chem. B 2018, 6, 105–111.

    Article  Google Scholar 

  22. Chen, T. M.; Wu, X. J.; Wang, J. X.; Yang, G. W. WSe2 few layers with enzyme mimic activity for high-sensitive and high-selective visual detection of glucose. Nanoscale 2017, 9, 11806–11813.

    Article  Google Scholar 

  23. Lin, T. R.; Zhong, L. S.; Wang, J.; Guo, L. Q.; Wu, H. Y.; Guo, Q. Q.; Fu, F. F.; Chen, G. N. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection. Biosens. Bioelectron. 2014, 59, 89–93.

    Article  Google Scholar 

  24. Chen, L. J.; Sun, B.; Wang, X. D.; Qiao, F. M.; Ai, S. Y. 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in L-asparagine solution: Enhanced peroxidase-like activity and colorimetric detection of glucose. J. Mater. Chem. B 2013, 1, 2268–2274.

    Article  Google Scholar 

  25. Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organicframework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149–4155.

    Article  Google Scholar 

  26. Cai, S. F.; Han, Q. S.; Qi, C.; Lian, Z.; Jia, X. H.; Yang, R.; Wang, C. Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 2016, 8, 3685–3693.

    Article  Google Scholar 

  27. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604–11609.

    Article  Google Scholar 

  28. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  29. Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.

    Article  Google Scholar 

  30. Sun, P. Z.; Ma, R. Z.; Bai, X. Y.; Wang, K. L.; Zhu, H. W.; Sasaki, T. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity. Sci. Adv. 2017, 3, e1602629.

    Article  Google Scholar 

  31. Guo, X. R.; Wang, Y.; Wu, F. Y.; Ni, Y. N.; Kokot, S. A. A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 2015, 140, 1119–1126.

    Article  Google Scholar 

  32. Wang, X. X.; Wu, Q.; Shan, Z.; Huang, Q. M. BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 2011, 26, 3614–3619.

    Article  Google Scholar 

  33. Ai, L. H.; Li, L. L.; Zhang, C. H.; Fu, J.; Jiang, J. MIL-53(Fe): A metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem.-Eur. J. 2013, 19, 15105–15108.

    Article  Google Scholar 

  34. Song, Y. J.; Wei, W. L.; Qu, X. G. Colorimetric biosensing using smart materials. Adv. Mater. 2011, 23, 4215–4236.

    Article  Google Scholar 

  35. Hou, C. P.; Zhu, J.; Liu, C.; Wang, X.; Kuang, Q.; Zheng, L. S. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm 2013, 15, 6127–6130.

    Article  Google Scholar 

  36. Zhao, L.; Xu, C. F.; Su, H. F.; Liang, J. H.; Lin, S. C.; Gu, L.; Wang, X. L.; Chen, M.; Zheng, N. F. Single-crystalline rhodium nanosheets with atomic thickness. Adv. Sci. 2015, 2, 1500100.

    Article  Google Scholar 

  37. Jang, K.; Kim, H. J.; Son, S. U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chem. Mater. 2010, 22, 1273–1275.

    Article  Google Scholar 

  38. Kibis, L. S.; Stadnichenko, A. I.; Koscheev, S. V.; Zaikovskii, V. I.; Boronin, A. I. XPS study of nanostructured rhodium oxide film comprising Rh4+ species. J. Phys. Chem. C 2016, 120, 19142–19150.

    Article  Google Scholar 

  39. Gayen, A.; Priolkar, K. R.; Sarode, P. R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura, S. Ce1–xRhxO2–δ solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem. Mater. 2004, 16, 2317–2328.

    Article  Google Scholar 

  40. Ni, P. J.; Dai, H. C.; Wang, Y. L.; Sun, Y. J.; Shi, Y.; Hu, J. T.; Li, Z. Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens Bioelectron. 2014, 60, 286–291.

    Article  Google Scholar 

  41. Chen, S.; Hai, X.; Chen, X. W.; Wang, J. H. In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem. 2014, 86, 6689–6694.

    Article  Google Scholar 

  42. Fu, Y.; Zhang, H. X.; Dai, S. D.; Zhi, X.; Zhang, J. L.; Li, W. Glutathione-stabilized palladium nanozyme for colorimetric assay of silver(I) ions. Analyst 2015, 140, 6676–6683.

    Article  Google Scholar 

  43. Jin, L. H.; Meng, Z.; Zhang, Y. Q.; Cai, S. J.; Zhang, Z. H.; Li, C.; Shang, L.; Shen, Y. H. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces 2017, 9, 10027–10033.

    Article  Google Scholar 

  44. Ye, H. H.; Mohar, J.; Wang, Q. X.; Catalano, M.; Kim, M. J.; Xia, X. H. Peroxidase-like properities of ruthenium nanoframes. Sci. Bull. 2016, 61, 1739–1745.

    Article  Google Scholar 

  45. Cui, M. L.; Zhou, J. D.; Zhao, Y.; Song, Q. J. Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens. Actuators B 2017, 243, 203–210.

    Article  Google Scholar 

  46. Choleva, T. G.; Gatselou, V. A.; Tsogas, G. Z.; Giokas, D. L. Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim. Acta 2018, 185, 22.

    Article  Google Scholar 

  47. Yuan, Y.; Yan, N.; Dyson, P. J. Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle core and stabilizer. ACS Catal. 2012, 2, 1057–1069.

    Article  Google Scholar 

  48. Shoba, V. M.; Takacs, J. M. Remarkably facile boranepromoted, rhodium-catalyzed asymmetric hydrogenation of tri-and tetrasubstituted alkenes. J. Am. Chem. Soc. 2017, 139, 5740–5743.

    Article  Google Scholar 

  49. Ren, X. Y.; Zhang, Z. Y.; Zhang, L.; Wang, Z.; Xia, C. G.; Ding, K. L. Rhodium complex catalyzed hydroformylation of olefins with CO2 and hydrosilane. Angew. Chem., Int. Ed. 2017, 56, 310–313.

    Article  Google Scholar 

  50. Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

    Article  Google Scholar 

  51. Mu, J. S.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidaselike activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542.

    Article  Google Scholar 

  52. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

    Article  Google Scholar 

  53. Ma, M.; Zhang, Y.; Gu, N. Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloid. Surface. A: Physicochem. Eng. Aspect. 2011, 373, 6–10.

    Article  Google Scholar 

  54. Tan, H. L.; Ma, C. J.; Gao, L.; Li, Q.; Song, Y. H.; Xu, F. G.; Wang, T.; Wang, L. Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem.-Eur. J. 2014, 20, 16377–16383.

    Article  Google Scholar 

  55. Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

    Article  Google Scholar 

  56. Su, H.; Liu, D. D.; Zhao, M.; Hu, W. L.; Xue, S. S.; Cao, Q.; Le, X. Y.; Ji, L. N.; Mao, Z. W. Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl. Mater. Interfaces 2015, 7, 8233–8242.

    Article  Google Scholar 

  57. Deng, H. H.; Lin, X. L.; Liu, Y. H.; Li, K. L.; Zhang, Q. Q.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Chitosanstabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 2017, 9, 10292–10300.

    Article  Google Scholar 

  58. Zhang, J. W.; Zhang, H. T.; Du, Z. Y.; Wang, X. Q.; Yu, S. H.; Jiang, H. L. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem. Commun. 2014, 50, 1092–1094.

    Article  Google Scholar 

  59. Sun, H. F.; Chao, J.; Zuo, X. L.; Su, S.; Liu, X. F.; Yuwen, L. H.; Fan, C. H.; Wang, L. H. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv. 2014, 4, 27625–27629.

    Article  Google Scholar 

  60. Zhou, C. L.; Li, S.; Zhu, W.; Pang, H. J.; Ma, H. Y. A sensor of a polyoxometalate and Au-Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim. Acta. 2013, 113, 454–463.

    Article  Google Scholar 

  61. Mi, C. C.; Wang, T. T.; Zeng, P.; Zhao, S.; Wang, N. Z.; Xu, S. K. Determination of ascorbic acid via luminescence quenching of LaF3:Ce, Tb nanoparticles synthesized through a microwave-assisted solvothermal method. Anal. Methods 2013, 5, 1463–1468.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development program from the Ministry of Science and Technology of China (No. 2016YFC0207102) and the National Natural Science Foundation of China (Nos. 21501034 and 21573050). Financial support from Chinese Academy of Sciences (No. XDA09030303) was also gratefully acknowledged. We thank Prof. Qinlin Guo at Institute of Physics, Chinese Academy of Sciences for help with XPS study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Wang or Rong Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Xiao, W., Duan, H. et al. Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing. Nano Res. 11, 6304–6315 (2018). https://doi.org/10.1007/s12274-018-2154-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2154-1

Keywords

Navigation