Skip to main content
Log in

E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The burgeoning field of atomic-level material control holds great promise for future breakthroughs in quantum and memristive device manufacture and fundamental studies of atomic-scale chemistry. Realization of atom-by-atom control of matter represents a complex and ongoing challenge. Here, we explore the feasibility of controllable motion of dopant Si atoms at the edges of graphene via the sub-atomically focused electron beam in a scanning transmission electron microscope. We demonstrate that the graphene edges can be cleaned of Si atoms and then subsequently replenished from nearby source material. It is also shown how Si edge atoms may be “pushed” from the edge of a small hole into the bulk of the graphene lattice and from the bulk of the lattice back to the edge. This is accomplished through sputtering of the edge of the graphene lattice to bury or uncover Si dopant atoms. Finally, we demonstrate e-beam mediated hole healing and incorporation of dopant atoms. These experiments form an initial step toward general atomic-scale material control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eigler, D. M.; Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 1990, 344, 524–526.

    Article  Google Scholar 

  2. Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 1993, 262, 218–220.

    Article  Google Scholar 

  3. Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 1993, 363, 524–527.

    Article  Google Scholar 

  4. Heinrich, A. J.; Lutz, C. P.; Gupta, J. A.; Eigler, D. M. Molecule cascades. Science 2002, 298, 1381–1387.

    Article  Google Scholar 

  5. Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.

    Article  Google Scholar 

  6. Pennycook, S. J.; Nellist, P. D. Scanning Transmission Electron Microscopy: Imaging and Analysis; Springer: New York, 2011.

    Book  Google Scholar 

  7. Pennycook, S. J. The impact of STEM aberration correction on materials science. Ultramicroscopy 2017, 180, 22–33.

    Article  Google Scholar 

  8. Krivanek, O. L.; Lovejoy, T. C.; Murfitt, M. F.; Skone, G.; Batson, P. E.; Dellby, N. Towards sub-10 meV energy resolution STEM-EELS. J. Phys.: Conf. Ser. 2014, 522, 012023.

    Google Scholar 

  9. Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409.

    Article  Google Scholar 

  10. Jiang, N. Electron beam damage in oxides: A review. Rep. Prog. Phys. 2016, 79, 016501.

    Article  Google Scholar 

  11. Zan, R.; Ramasse, Q. M.; Bangert, U.; Novoselov, K. S. Graphene reknits its holes. Nano Lett. 2012, 12, 3936–3940.

    Article  Google Scholar 

  12. van Dorp, W. F.; Zhang, X.; Feringa, B. L.; Wagner, J. B.; Hansen, T. W.; De Hosson, J. T. M. Nanometer-scale lithography on microscopically clean graphene. Nanotechnology 2011, 22, 505303.

    Article  Google Scholar 

  13. Ramasse, Q. M.; Zan, R.; Bangert, U.; Boukhvalov, D. W.; Son, Y.-W.; Novoselov, K. S. Direct experimental evidence of metal-mediated etching of suspended graphene. ACS Nano 2012, 6, 4063–4071.

    Article  Google Scholar 

  14. Xu, S. Y.; Tian, M. L.; Wang, J. G.; Xu, J.; Redwing, J. M.; Chan, M. H. W. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 2005, 1, 1221–1229.

    Article  Google Scholar 

  15. Jesse, S.; He, Q.; Lupini, A. R.; Leonard, D. N.; Oxley, M. P.; Ovchinnikov, O.; Unocic, R. R.; Tselev, A.; Fuentes- Cabrera, M.; Sumpter, B. G. et al. Atomic-level sculpting of crystalline oxides: Toward bulk nanofabrication with single atomic plane precision. Small 2015, 11, 5895–5900.

    Article  Google Scholar 

  16. Krasheninnikov, A. V.; Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 2007, 6, 723–733.

    Article  Google Scholar 

  17. Krasheninnikov, A. V.; Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 2010, 107, 071301.

    Article  Google Scholar 

  18. Kim, M. J.; McNally, B.; Murata, K.; Meller, A. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 2007, 18, 205302.

    Article  Google Scholar 

  19. El-Barbary, A. A.; Telling, R. H.; Ewels, C. P.; Heggie, M. I.; Briddon, P. R. Structure and energetics of the vacancy in graphite. Phys. Rev. B 2003, 68, 144107.

    Article  Google Scholar 

  20. Meyer, J. C.; Kisielowski, C.; Erni, R.; Rossell, M. D.; Crommie, M. F.; Zettl, A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 2008, 8, 3582–3586.

    Article  Google Scholar 

  21. Robertson, A. W.; Lee, G.-D.; He, K.; Fan, Y.; Allen, C. S.; Lee, S.; Kim, H.; Yoon, E.; Zheng, H. M.; Kirkland, A. I. et al. Partial dislocations in graphene and their atomic level migration dynamics. Nano Lett. 2015, 15, 5950–5955.

    Article  Google Scholar 

  22. Robertson, A. W.; Lee, G.-D.; He, K.; Yoon, E.; Kirkland, A. I.; Warner, J. H. Stability and dynamics of the tetravacancy in graphene. Nano Lett. 2014, 14, 1634–1642.

    Article  Google Scholar 

  23. Robertson, A. W.; Lee, G.-D.; He, K.; Yoon, E.; Kirkland, A. I.; Warner, J. H. The role of the bridging atom in stabilizing odd numbered graphene vacancies. Nano Lett. 2014, 14, 3972–3980.

    Article  Google Scholar 

  24. Robertson, A. W.; Montanari, B.; He, K.; Kim, J.; Allen, C. S.; Wu, Y. A.; Olivier, J.; Neethling, J.; Harrison, N.; Kirkland, A. I. et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 2013, 13, 1468–1475.

    Article  Google Scholar 

  25. Susi, T.; Kotakoski, J.; Kepaptsoglou, D.; Mangler, C.; Lovejoy, T. C.; Krivanek, O. L.; Zan, R.; Bangert, U.; Ayala, P.; Meyer, J. C. et al. Silicon-carbon bond inversions driven by 60-keV electrons in graphene. Phys. Rev. Lett. 2014, 113, 115501.

    Article  Google Scholar 

  26. Shinada, T.; Koyama, H.; Hinoshita, C.; Imamura, K.; Ohdomari, I. Improvement of focused ion-beam optics in single-ion implantation for higher aiming precision of one-by-one doping of impurity atoms into nano-scale semiconductor devices. Jpn. J. Appl. Phys. 2002, 41, L287.

    Article  Google Scholar 

  27. Ishikawa, R.; Lupini, A. R.; Findlay, S. D.; Taniguchi, T.; Pennycook, S. J. Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy. Nano Lett. 2014, 14, 1903–1908.

    Article  Google Scholar 

  28. Sharma, R. An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J. Mater. Res. 2005, 20, 1695–1707.

    Article  Google Scholar 

  29. Evans, J. E.; Jungjohann, K. L.; Browning, N. D.; Arslan, I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 2011, 11, 2809–2813.

    Article  Google Scholar 

  30. Jesse, S.; Borisevich, A. Y.; Fowlkes, J. D.; Lupini, A. R.; Rack, P. D.; Unocic, R. R.; Sumpter, B. G.; Kalinin, S. V.; Belianinov, A.; Ovchinnikova, O. S. Directing matter: Toward atomic-scale 3D nanofabrication. ACS Nano 2016, 10, 5600–5618.

    Article  Google Scholar 

  31. Susi, T.; Kepaptsoglou, D.; Lin, Y.-C.; Ramasse, Q. M.; Meyer, J. C.; Suenaga, K.; Kotakoski, J. Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D Mater. 2017, 4, 042004.

    Article  Google Scholar 

  32. Dyck, O.; Kim, S.; Kalinin, S. V.; Jesse, S. Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies. J. Vac. Sci. Technol. B 2018, 36, 011801.

    Article  Google Scholar 

  33. Garcia, A. G. F.; Neumann, M.; Amet, F.; Williams, J. R.; Watanabe, K.; Taniguchi, T.; Goldhaber-Gordon, D. Effective cleaning of hexagonal boron nitride for graphene devices. Nano Lett. 2012, 12, 4449–4454.

    Article  Google Scholar 

  34. Dyck, O.; Kim, S.; Kalinin, S. V.; Jesse, S. Placing single atoms in graphene with a scanning transmission electron microscope. Appl. Phys. Lett. 2017, 111, 113104.

    Article  Google Scholar 

  35. Susi, T.; Meyer, J. C.; Kotakoski, J. Manipulating lowdimensional materials down to the level of single atoms with electron irradiation. Ultramicroscopy 2017, 180, 163–172.

    Article  Google Scholar 

  36. Kotakoski, J.; Santos-Cottin, D.; Krasheninnikov, A. V. Stability of graphene edges under electron beam: Equilibrium energetics versus dynamic effects. ACS Nano 2012, 6, 671–676.

    Article  Google Scholar 

  37. Meyer, J. C.; Eder, F.; Kurasch, S.; Skakalova, V.; Kotakoski, J.; Park, H. J.; Roth, S.; Chuvilin, A.; Eyhusen, S.; Benner, G. et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 2012, 108, 196102.

    Article  Google Scholar 

  38. Susi, T.; Hofer, C.; Argentero, G.; Leuthner, G. T.; Pennycook, T. J.; Mangler, C.; Meyer, J. C.; Kotakoski, J. Isotope analysis in the transmission electron microscope. Nat. Commun. 2016, 7, 13040.

    Article  Google Scholar 

  39. Song, B.; Schneider, G. F.; Xu, Q.; Pandraud, G.; Dekker, C.; Zandbergen, H. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 2011, 11, 2247–2250.

    Article  Google Scholar 

  40. Ma, Y. C. Simulation of interstitial diffusion in graphite. Phys. Rev. B 2007, 76, 075419.

    Article  Google Scholar 

  41. Dyck, O.; Kim, S.; Jimenez-Izal, E.; Alexandrova, A. N.; Kalinin, S. V.; Jesse, S. Assembling di- and multiatomic Si clusters in graphene via electron beam manipulation. 2017, arXiv:1710.09416. arXiv.org e-Print archive. https://doi.org/arxiv.org/abs/1710.09416 (accessed Apr 19, 2018).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ivan Vlassiouk for provision of the graphene samples and Dr. Francois Amet for assisting with the argon-oxygen cleaning procedure. Research is supported by Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (S. V. K.), and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy (O. D, S. K., and S. J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Dyck.

Electronic supplementary material

Supplementary material, approximately 37.7 MB.

12274_2018_2141_MOESM2_ESM.pdf

E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyck, O., Kim, S., Kalinin, S.V. et al. E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope. Nano Res. 11, 6217–6226 (2018). https://doi.org/10.1007/s12274-018-2141-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2141-6

Keywords

Navigation