Skip to main content
Log in

Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, 1,2-bis(diphenylphosphino)ethane (dppe) ligands are used to synthesize gold nanoclusters with an icosahedral Au13 core. The nanoclusters are characterized and formulated as [Au13(dppe)5Cl2]Cl3 using synchrotron radiation X-ray diffraction, UV/Vis absorption spectroscopy, electrospray ionization mass spectrometry, and density functional theory (DFT) calculations. The bidentate feature of dppe ligands and the positions of coordinating surface gold atoms induce a helical arrangement that forms a propeller-like structure, which reduces the symmetry of the gold nanocluster to C1. Therefore, dppe ligands perform as a directing agent to create chiral an ansa metallamacrocycle [Au13(dppe)5Cl2]3+ nanocluster, as confirmed by simulated electronic circular dichroism spectrum. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap of the [Au13(dppe)5Cl2]3+ cluster is determined as approx. 1.9 eV, and further confirmed by ultraviolet photoemission spectroscopy analysis and DFT simulation. Furthermore, the photoactivity of [Au13(dppe)5Cl2]3+ is investigated, with the nanocluster shown to possess near-infrared photoluminescence properties, which can be employed for 1O2 photogeneration. The quantum yield of 1O2 photogeneration using the [Au13(dppe)5Cl2]3+ nanocluster is up to 0.71, which is considerably higher than those of anthracene (an organic dye), and Au25 and Au38 nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    Article  Google Scholar 

  2. Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816–824.

    Article  Google Scholar 

  3. Fang, J.; Zhang, B.; Yao, Q. F.; Yang, Y.; Xie, J. P.; Yan, N. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord. Chem. Rev. 2016, 322, 1–29.

    Article  Google Scholar 

  4. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

    Article  Google Scholar 

  5. Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benitez, G.; Rubert, A. A.; Salvarezza, R. C. The chemistry of the sulfur–gold interface: In search of a unified model. Acc. Chem. Res. 2012, 45, 1183–1192.

    Article  Google Scholar 

  6. Yu, Y.; Luo, Z. T.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D. E.; Xie, J. P. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249.

    Article  Google Scholar 

  7. Liu, P. X.; Qin, R. X.; Fu, G.; Zheng, N. F. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131.

    Article  Google Scholar 

  8. Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z. M.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano 2016, 10, 7998–8005.

    Article  Google Scholar 

  9. Mingos, D. M. P. Gold Clusters, Colloids and Nanoparticles I; Springer: Switzerland, 2014.

    Google Scholar 

  10. Zeng, C. J.; Chen, Y. X.; Kirschbaum, K.; Lambright, K. J.; Jin, R. C. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 2016, 354, 1580–1584.

    Article  Google Scholar 

  11. Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.

    Article  Google Scholar 

  12. Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000–5005.

    Article  Google Scholar 

  13. Chen, J.; Zhang, Q. F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L. S. Controlling gold nanoclusters by diphospine ligands. J. Am. Chem. Soc. 2014, 136, 92–95.

    Article  Google Scholar 

  14. Lopez-Acevedo, O.; Tsunoyama, H.; Tsukuda, T.; Häkkinen, H.; Aikens, C. M. Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J. Am. Chem. Soc. 2010, 132, 8210–8218.

    Article  Google Scholar 

  15. McKenzie, L. C.; Zaikova, T. O.; Hutchison, J. E. Structurally similar triphenylphosphine-stabilized undecagolds, Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl, exhibit distinct ligand exchange pathways with glutathione. J. Am. Chem. Soc. 2014, 136, 13426–13435.

    Article  Google Scholar 

  16. Gutrath, B. S.; Englert, U.; Wang, Y. T.; Simon, U. A missing link in undecagold cluster chemistry: Single-crystal X-ray analysis of [Au11(PPh3)7Cl3]. Eur. J. Inorg. Chem. 2013, 2013, 2002–2006.

    Article  Google Scholar 

  17. Yan, J. Z.; Su, H. F.; Yang, H. Y.; Hu, C. Y.; Malola, S.; Lin, S. C.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Asymmetric synthesis of chiral bimetallic [Ag28Cu12(SR)24]4–nanoclusters via ion pairing. J. Am. Chem. Soc. 2016, 138, 12751–12754.

    Article  Google Scholar 

  18. Wan, X. K.; Yuan, S. F.; Lin, Z. W.; Wang, Q. M. A chiral gold nanocluster Au20 protected by tetradentate phosphine ligands. Angew. Chem., Int. Ed. 2014, 53, 2923–2926.

    Article  Google Scholar 

  19. Qian, H. F.; Zhu, M. Z.; Gayathri, C.; Gil, R. R.; Jin, R. C. Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 2011, 5, 8935–8942.

    Article  Google Scholar 

  20. Zhu, M. Z.; Qian, H. F.; Meng, X. M.; Jin, S. S.; Wu, Z. K.; Jin, R. C. Chiral Au25 nanospheres and nanorods: Synthesis and insight into the origin of chirality. Nano Lett. 2011, 11, 3963–3969.

    Article  Google Scholar 

  21. Xu, Q.; Kumar, S.; Jin, S. S.; Qian, H. F.; Zhu, M. Z.; Jin, R. C. Chiral 38-gold-atom nanoclusters: Synthesis and chiroptical properties. Small 2014, 10, 1008–1014.

    Article  Google Scholar 

  22. Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8.

    Google Scholar 

  23. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.

    Article  Google Scholar 

  24. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 1988, 38, 3098–3100.

    Article  Google Scholar 

  25. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

    Article  Google Scholar 

  26. Burant, J. C.; Scuseria, G. E.; Frisch, M. J. A linear scaling method for hartree-fock exchange calculations of large molecules. J. Chem. Phys. 1996, 105, 8969–8972.

    Article  Google Scholar 

  27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT, USA, 2009.

    Google Scholar 

  28. C650H600P50Cl10Au65, M r = 23,117.76, monoclinic, space group C/c, a = 29.113(6) Å, b = 29.569(6) Å, c = 70.683(14) Å, β = 101.61(3)°, V = 59602(21) Å3, Z = 4, T = 293(2) K, 81,277 reflections measured, R 1(final) = 0.0830, wR 2 = 0.1931. CCDC-1548942, contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

  29. Briant, C. E.; Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, D. M. P.; Welch, A. J. Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Au13(PMe2Ph)10Cl2](PF6)3: The realization of a theoretical prediction. J. Chem. Soc., Chem. Commun. 1981, 201–202.

    Google Scholar 

  30. Shichibu, Y.; Konishi, K. HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: A novel synthetic route to “magic-number” Au13 clusters. Small 2010, 6, 1216–1220.

    Article  Google Scholar 

  31. Shichibu, Y.; Suzuki, K.; Konishi, K. Facile synthesis and optical properties of magic-number Au13 clusters. Nanoscale 2012, 4, 4125–4129.

    Article  Google Scholar 

  32. Sugiuchi, M.; Shichibu, Y.; Nakanishi, T.; Hasegawa, Y.; Konishi, K. Cluster–π electronic interaction in a superatomic Au13 cluster bearing σ-bonded acetylide ligands. Chem. Commun. 2015, 51, 13519–13522.

    Article  Google Scholar 

  33. Flack, H. D.; Bernardinelli, G. Absolute structure and absolute configuration. Acta Cryst. 1999, A55, 908–915.

    Article  Google Scholar 

  34. Yamamoto, Y.; Konno, H. Ylide-metal complexes. X. An X-ray photoelectron spectroscopic study of triphenylmethylenephosphorane and gold- and copper-phosphorane complexes. Bull. Chem. Soc. Jpn. 1986, 59, 1327–1330.

    Article  Google Scholar 

  35. Dolamic, I.; Knoppe, S.; Dass, A.; Bürgi, T. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat. Commun. 2012, 3, 798..

    Article  Google Scholar 

  36. Dolamic, I.; Varnholt, B.; Bürgi, T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun. 2015, 6, 7117..

    Article  Google Scholar 

  37. Zhang, J. W.; Luo, J. H.; Wang, P. M.; Ding, B.; Huang, Y. C.; Zhao, Z. L.; Zhang, J.; Wei, Y. G. Step-by-step strategy from achiral precursors to polyoxometalates-based chiral organic-inorganic hybrids. Inorg. Chem. 2015, 54, 2551–2559.

    Article  Google Scholar 

  38. Zhang, J. W.; Huang, Y. C.; Zhang, J.; She, S.; Hao, J.; Wei, Y. G. A direct anchoring of Anderson-type polyoxometalates in aqueous media with tripodal ligands especially containing the carboxyl group. Dalton Trans. 2014, 43, 2722–2725.

    Article  Google Scholar 

  39. He, X.; Wang, Y. C.; Jiang, H.; Zhao, L. Structurally well-defined sigmoidal gold clusters: Probing the correlation between metal atom arrangement and chiroptical response. J. Am. Chem. Soc. 2016, 138, 5634–5643.

    Article  Google Scholar 

  40. Takano, S.; Tsukuda, T. Amplification of the optical activity of gold clusters by the proximity of BINAP. J. Phys. Chem. Lett. 2016, 7, 4509–4513.

    Article  Google Scholar 

  41. Ji, M.; Gu, X.; Li, X.; Gong, X. G.; Li, J.; Wang, L. S. Experimental and theoretical investigation of the electronic and geometrical structures of the Au32 cluster. Angew. Chem., Int. Ed. 2005, 44, 7119–7123.

    Article  Google Scholar 

  42. Liu, J.; Krishna, K. S.; Losovyj, Y. B.; Chattopadhyay, S.; Lozova, N.; Miller, J. T.; Spivey, J. J.; Kumar, C. S. S. R. Ligand-stabilized and atomically precise gold nanocluster catalysis: A case study for correlating fundamental electronic properties with catalysis. Chem.—Eur. J. 2013, 19, 10201–10208.

    Article  Google Scholar 

  43. Losovyj, Y. B.; Li, S.-C.; Lozova, N.; Katsiev, K.; Stellwagen, D.; Diebold, U.; Kong, L.; Kumar, C. S. S. R. Evidence for s–d hybridization in Au38 clusters. J. Phys. Chem. C 2012, 116, 5857–5861.

    Article  Google Scholar 

  44. Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C. J.; Kauffman, D. R.; Yoshimoto, J.; Iwasaki, Y.; Jin, R. C. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters. Chem. Mater. 2014, 26, 2777–2788.

    Article  Google Scholar 

  45. Li, Z. M.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations. ACS Catal. 2017, 7, 3368–3374

    Article  Google Scholar 

  46. Zhou, Y.; Li, G. A critical review on carbon-carbon coupling over ultra-small gold nanoclusters. Acta Phys.-Chim. Sin. 2017, 33, 1297–1309.

    Google Scholar 

  47. Chen, H. J.; Liu, C.; Wang, M.; Zhang, C. F.; Luo, N. C.; Wang, Y. H.; Abroshan, H.; Li, G.; Wang, F. Visible light gold nanocluster photocatalyst: Selective aerobic oxidation of amines to imines. ACS Catal. 2017, 7, 3632–3638.

    Article  Google Scholar 

  48. Zhang, C. L.; Chen, Y. D.; Wang, H.; Li, Z.; Zheng, K.; Li, S.; Li, G. Transition-metal-mediated catalytic properties of CeO2-supported gold clusters in aerobic alcohol oxidation. Nano Res., in press, https://doi.org/10.1007/s12274-017-1831-9.

  49. Liu, C.; Zhang, J.; Huang, J.; Zhang, C.; Hong, F.; Zhou, Y.; Li, G.; Haruta, M. Efficient aerobic oxidation of glucose to gluconic acid over activated carbon-supported gold clusters. ChemSuSChem 2017, 10, 1976–1980.

    Article  Google Scholar 

  50. Hayyan, M.; Hashim, M. A.; Al Nashef, I. M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016, 116, 3029–3085.

    Article  Google Scholar 

  51. Li, Y. Y.; Cheng, H.; Yao, T.; Sun, Z. H.; Yan, W. S.; Jiang, Y.; Xie, Y.; Sun, Y. F.; Huang, Y. Y.; Liu, S. J. et al. Hexane-driven icosahedral to cuboctahedral structure transformation of gold nanoclusters. J. Am. Chem. Soc. 2012, 134, 17997–18003.

    Article  Google Scholar 

  52. Chen, Y. D.; Zhang, C. L.; Yang, C. P.; Zhang, J. W.; Zheng, K.; Fang, Q. H.; Li, G. A Waugh type [CoMo9O32]6–cluster with atomically dispersed CoIV originates from anderson type [CoMo6O24]3– for photocatalytic oxygen molecule activation. Nanoscale 2017, 9, 15332–15339.

    Article  Google Scholar 

  53. Kurashige, W.; Negishi, Y. Synthesis, stability, and photoluminescence properties of PdAu10(PPh3)8Cl2 clusters. J. Clust. Sci. 2012, 23, 365–374.

    Article  Google Scholar 

Download references

Acknowledgements

G. L. acknowledges financial supports by the fund of the National Natural Science Foundation of China (No. 21701168) and the Liaoning Natural Science Foundation (No. 20170540897), and beamline BL14B (Shanghai Synchrotron Radiation Facility) for providing the beam time. A portion of this report was prepared as an account of work sponsored by an agency of the United States Government (D. R. K.). Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhou, Y., Zheng, K. et al. Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Res. 11, 5787–5798 (2018). https://doi.org/10.1007/s12274-017-1935-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1935-2

Keywords

Navigation