Skip to main content
Log in

Nanocapsules of oxalate oxidase for hyperoxaluria treatment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Enzyme therapeutics have great potential for the treatment of systemic disorders such as urolithiasis and nephrocalcinosis, which are caused by the excessive accumulation of oxalate. However, exogenous enzymes have short half-lives in vivo and elicit high immunogenicity, which largely limit the therapeutic outcomes. Herein, we report a delivery strategy whereby therapeutic enzymes are encapsulated within a thin zwitterionic polymer shell to form enzyme nanocapsules. The strategy is exemplified by the encapsulation of oxalate oxidase (OxO) for the treatment of hyperoxaluria, because as-synthesized OxO nanocapsules have a prolonged blood circulation half-life and elicit reduced immunogenicity. Our design of enzyme nanocapsules that enable the systemic delivery of therapeutic enzymes can be extended to various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoppe, B.; Beck, B. B.; Milliner, D. S. The primary hyperoxalurias. Kidney Int. 2009, 75: 1264–1271.

    Article  Google Scholar 

  2. Karaolanis, G.; Lionaki, S.; Moris, D.; Palla, V. V.; Vernadakis, S. Secondary hyperoxaluria: A risk factor for kidney stone formation and renal failure in native kidneys and renal grafts. Transplant. Rev. 2014, 28: 182–187.

    Article  Google Scholar 

  3. Rumsby, G. Biochemical and genetic diagnosis of the primary hyperoxalurias: A review. Mol. Urol. 2000, 4: 349–354.

    Google Scholar 

  4. Beck, B. B.; Hoyer-Kuhn, H.; Göbel, H.; Habbig, S.; Hoppe, B. Hyperoxaluria and systemic oxalosis: An update on current therapy and future directions. Expert Opin. Investig. Drugs 2013, 22: 117–129.

    Article  Google Scholar 

  5. Bobrowski, A. E.; Langman, C. B. Hyperoxaluria and systemic oxalosis: Current therapy and future directions. Expert Opin. Pharmacother. 2006, 7: 1887–1896.

    Article  Google Scholar 

  6. Woo, E. J.; Dunwell, J. M.; Goodenough, P. W.; Marvier, A. C.; Pickersgill, R. W. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat. Struct. Biol. 2000, 7: 1036–1040.

    Article  Google Scholar 

  7. Whittaker, M. M.; Pan, H. Y.; Yukl, E. T.; Whittaker, J. W. Burst kinetics and redox transformations of the active site manganese ion in oxalate oxidase: Implications for the catalytic mechanism. J. Biol. Chem. 2007, 282: 7011–7023.

    Article  Google Scholar 

  8. Whittaker, M. M.; Whittaker, J. W. Characterization of recombinant barley oxalate oxidase expressed by Pichia pastoris. J. Biol. Inorg. Chem. 2002, 7: 136–145.

    Article  Google Scholar 

  9. Liu, Y.; Li, J.; Lu, Y. F. Enzyme therapeutics for systemic detoxification. Adv. Drug. Deliver Rev. 2015, 90: 24–39.

    Article  Google Scholar 

  10. Gerngross, T. U. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat. Biotechnol. 2004, 22: 1409–1414.

    Article  Google Scholar 

  11. Zhang, H.; Fu, H.; Luallen, R. J.; Liu, B. F.; Lee, F. H.; Doms, R. W.; Geng, Y. Antibodies elicited by yeast glycoproteins recognize HIV-1 virions and potently neutralize virions with high mannose N-glycans. Vaccine 2015, 33: 5140–5147.

    Article  Google Scholar 

  12. Raghavan, K. G.; Tarachand, U. Degradation of oxalate in rats implanted with immobilized oxalate oxidase. FEBS Lett. 1986, 195: 101–105.

    Article  Google Scholar 

  13. Dahiya, T.; Pundir, C. S. In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria. Indian J. Med. Res. 2013, 137: 136–141.

    Google Scholar 

  14. Liang, S.; Liu, Y.; Jin, X.; Liu, G.; Wen, J.; Zhang, L. L.; Li, J.; Yuan, X. B.; Chen, I. S. Y.; Chen, W. et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 2016, 9: 1022–1031.

    Article  Google Scholar 

  15. Zhang, P.; Sun, F.; Tsao, C.; Liu, S. J.; Jain, P.; Sinclair, A.; Hung, H. C.; Bai, T.; Wu, K.; Jiang, S. Y. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc. Natl. Acad. Sci. USA 2015, 112: 12046–12051.

    Article  Google Scholar 

  16. Jin, Q.; Chen, Y. J.; Wang, Y.; Ji, J. Zwitterionic drug nanocarriers: A biomimetic strategy for drug delivery. Colloid Surface B: Biointerfaces 2014, 124: 80–86.

    Article  Google Scholar 

  17. Keefe, A. J.; Jiang, S. Y. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 2012, 4: 59–63.

    Article  Google Scholar 

  18. Zhao, H. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J. Mol. Catal. B: Enzym. 2005, 37: 16–25.

    Article  Google Scholar 

  19. Li, J.; Jin, X.; Liu, Y.; Li, F.; Zhang, L. L.; Zhu, X. Y.; Lu, Y. F. Robust enzyme-silica composites made from enzyme nanocapsules. Chem. Commun. 2015, 51: 9628–9631.

    Article  Google Scholar 

  20. Moro, T.; Takatori, Y.; Ishihara, K.; Konno, T.; Takigawa, Y.; Matsushita, T.; Chung, U. I.; Nakamura, K.; Kawaguchi, H. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat. Mater. 2004, 3: 829–836.

    Article  Google Scholar 

  21. Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012, 134: 2139–2147.

    Article  Google Scholar 

  22. Rodriguez, P. L.; Harada, T.; Christian, D. A.; Pantano, D. A.; Tsai, R. K.; Discher, D. E. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339: 971–975.

    Article  Google Scholar 

Download references

Acknowledgements

Support for OxO enzyme production from the National Institutes of Health (GM 42680) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Xu, D., Wu, D. et al. Nanocapsules of oxalate oxidase for hyperoxaluria treatment. Nano Res. 11, 2682–2688 (2018). https://doi.org/10.1007/s12274-017-1898-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1898-3

Keywords

Navigation