Skip to main content
Log in

Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have been demonstrated in various devices. However, a stable AgNW/polymer composite as the bottom electrode for perovskite solar cells has not yet been reported. Here, a long-term stable, smooth AgNW composite with an antioxidant-modified chitosan polymer was developed. The modified polymer can effectively protect pristine AgNWs from side reactions with perovskite, whereas it does not block the carrier drift through the interface of the insulating polymer. The as-prepared AgNW/polymer composite electrode exhibited a root mean square roughness below 10 nm at a scan size of 50 μm × 50 μm, and its original sheet resistance did not change obviously after aging at 85 °C for 40 days in air. As a result, the perovskite solar cell employing the composite as the bottom electrode yielded a power conversion efficiency of 7.9%, which corresponds to nearly 75% of that of the reference device with an ITO electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, L.; Yu, Z. B.; Hu, W. L.; Chang, C. H.; Chen, Q.; Pei, Q. B. Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv. Mater. 2011, 23, 5563–5567.

    Article  Google Scholar 

  2. Ye, S. R.; Rathmell, A. R.; Chen, Z. F.; Stewart, I. E.; Wiley, B. J. Metal nanowire networks: The next generation of transparent conductors. Adv. Mater. 2014, 26, 6670–6687.

    Article  Google Scholar 

  3. Bao, Z. A.; Chen, X. D. Flexible and stretchable devices. Adv. Mater. 2016, 28, 4177–4179.

    Article  Google Scholar 

  4. dos Reis Benatto, G. A.; Roth, B.; Corazza, M.; Søndergaard, R. R.; Gevorgyan, S. A.; Jørgensen, M.; Krebs, F. C. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules. Nanoscale 2016, 8, 318–326.

    Article  Google Scholar 

  5. Huang, Y.; Liao, S. Y.; Ren, J.; Khalid, B.; Peng, H. L.; Wu, H. A transparent, conducting tape for flexible electronics. Nano Res. 2016, 9, 917–924.

    Article  Google Scholar 

  6. Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J. P.; Bellet, D. Metallic nanowire-based transparent electrodes for next generation flexible devices: A review. Small 2016, 12, 6052–6075.

    Article  Google Scholar 

  7. Zhang, L. W.; Zhang, L. J.; Qiu, Y. J.; Ji, Y.; Liu, Y.; Liu, H.; Li, G. J.; Guo, Q. Q. Improved performance by SiO2 hollow nanospheres for silver nanowire-based flexible transparent conductive films. ACS Appl. Mater. Interfaces 2016, 8, 27055–27063.

    Article  Google Scholar 

  8. Wang, J. J.; Fang, Z. Q.; Zhu, H. L.; Gao, B. Y.; Garner, S.; Cimo, P.; Barcikowski, Z.; Mignerey, A.; Hu, L. B. Flexible, transparent, and conductive defrosting glass. Thin Solid Films 2014, 556, 13–17.

    Article  Google Scholar 

  9. Bob, B.; Machness, A.; Song, T. B.; Zhou, H. P.; Chung, C.-H.; Yang, Y. Silver nanowires with semiconducting ligands for low-temperature transparent conductors. Nano Res. 2016, 9, 392–400.

    Article  Google Scholar 

  10. Lu, H. F.; Zhang, D.; Cheng, J. Q.; Liu, J.; Mao, J.; Choy, W. C. H. Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcoholbased chemical approach. Adv. Funct. Mater. 2015, 25, 4211–4218.

    Article  Google Scholar 

  11. Zilberberg, K.; Gasse, F.; Pagui, R.; Polywka, A.; Behrendt, A.; Trost, S.; Heiderhoff, R.; Görrn, P.; Riedl, T. Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv. Funct. Mater. 2014, 24, 1671–1678.

    Article  Google Scholar 

  12. Huang, G. W.; Xiao, H. M.; Fu, S. Y. Wearable electronics of silver-nanowire/poly(dimethylsiloxane) nanocomposite for smart clothing. Sci. Rep. 2015, 5, 13971.

    Article  Google Scholar 

  13. Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Greyson Christoforo, M.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241–249.

    Article  Google Scholar 

  14. Huang, Q. J.; Shen, W. F.; Fang, X. Z.; Chen, G. F.; Guo, J. C.; Xu, W.; Tan, R. Q.; Song, W. J. Highly flexible and transparent film heaters based on polyimide films embedded with silver nanowires. RSC Adv. 2015, 5, 45836–45843.

    Article  Google Scholar 

  15. Park, Y.; Bormann, L.; Müller-Meskamp, L.; Vandewal, K.; Leo, K. Efficient flexible organic photovoltaics using silver nanowires and polymer based transparent electrodes. Org. Electron. 2016, 36, 68–72.

    Article  Google Scholar 

  16. Yu, Z. B.; Li, L.; Zhang, Q. W.; Hu, W. L.; Pei, Q. B. Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 2011, 23, 4453–4457.

    Article  Google Scholar 

  17. Margulis, G. Y.; Christoforo, M. G.; Lam, D.; Beiley, Z. M.; Bowring, A. R.; Bailie, C. D.; Salleo, A.; McGehee, M. D. Spray deposition of silver nanowire electrodes for semitransparent solid-state dye-sensitized solar cells. Adv. Energy Mater. 2013, 3, 1657–1663.

    Article  Google Scholar 

  18. Singh, M.; Jiu, J. T.; Sugahara, T.; Suganuma, K. Thin-film copper indium gallium selenide solar cell based on lowtemperature all-printing process. ACS Appl. Mater. Interfaces 2014, 6, 16297–16303.

    Article  Google Scholar 

  19. Bailie, C. D.; Christoforo, M. G.; Mailoa, J. P.; Bowring, A. R.; Unger, E. L.; Nguyen, W. H.; Burschka, J.; Pellet, N.; Lee, J. Z.; Gratzel, M. et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energ. Environ. Sci. 2015, 8, 956–963.

    Article  Google Scholar 

  20. Knight, M. W.; van de Groep, J.; Bronsveld, P. C. P.; Sinke, W. C.; Polman, A. Soft imprinted Ag nanowire hybrid electrodes on silicon heterojunction solar cells. Nano Energy 2016, 30, 398–406.

    Article  Google Scholar 

  21. Aurang, P.; Doganay, D.; Bek, A.; Turan, R.; Unalan, H. E. Silver nanowire networks as transparent top electrodes for silicon solar cells. Solar Energy 2017, 141, 110–117.

    Article  Google Scholar 

  22. Ansari, M. O.; Khan, M. M.; Ansari, S. A.; Raju, K.; Lee, J.; Cho, M. H. Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO2@polyaniline nanocomposite film. ACS Appl. Mater. Interfaces 2014, 6, 8124–8133.

    Article  Google Scholar 

  23. Kim, A. Y.; Kim, M. K.; Hudaya, C.; Park, J. H.; Byun, D.; Lim, J. C.; Lee, J. K. Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters. Nanoscale 2016, 8, 3307–3313.

    Article  Google Scholar 

  24. Idier, J.; Neri, W.; Labrugère, C.; Ly, I.; Poulin, P.; Backov, R. Modified silver nanowire transparent electrodes with exceptional stability against oxidation. Nanotechnology 2016, 27, 105705.

    Article  Google Scholar 

  25. Song, T. B.; Rim, Y. S.; Liu, F. M.; Bob, B.; Ye, S. L.; Hsieh, Y. T.; Yang, Y. Highly robust silver nanowire network for transparent electrode. ACS Appl. Mater. Interfaces 2015, 7, 24601–24607.

    Article  Google Scholar 

  26. Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y. D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S. H. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 2015, 27, 4744–4751.

    Article  Google Scholar 

  27. Han, J.; Yuan, S.; Liu, L.; Qiu, X. F.; Gong, H. B.; Yang, X. P.; Li, C. C.; Hao, Y. F.; Cao, B. Q. Fully indium-free flexible Ag nanowires/ZnO:F composite transparent conductive electrodes with high haze. J. Mater. Chem. A 2015, 3, 5375–5385.

    Article  Google Scholar 

  28. Kim, A.; Lee, H.; Kwon, H. C.; Jung, H. S.; Park, N. G.; Jeong, S.; Moon, J. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale 2016, 8, 6308–6316.

    Article  Google Scholar 

  29. Liu, Y. S.; Feng, J.; Ou, X. L.; Cui, H. F.; Xu, M.; Sun, H. B. Ultrasmooth, highly conductive and transparent PEDOT:PSS/silver nanowire composite electrode for flexible organic light-emitting devices. Org. Electron. 2016, 31, 247–252.

    Article  Google Scholar 

  30. Kim, S.; Sanyoto, B.; Park, W. T.; Kim, S.; Mandal, S.; Lim, J. C.; Noh, Y. Y.; Kim, J. H. Purification of PEDOT:PSS by ultrafiltration for highly conductive transparent electrode of all-printed organic devices. Adv. Mater. 2016, 28, 10149–10154.

    Article  Google Scholar 

  31. Noh, Y. J.; Kim, S. S.; Kim, T. W.; Na, S. I. Cost-effective ITO-free organic solar cells with silver nanowire–PEDOT:PSS composite electrodes via a one-step spray deposition method. Sol. Energy Mater. Sol. C. 2014, 120, 226–230.

    Article  Google Scholar 

  32. Xu, Y. H.; Liu, J. Q. Graphene as transparent electrodes: Fabrication and new emerging applications. Small 2016, 12, 1400–1419.

    Article  Google Scholar 

  33. Zheng, Q. B.; Li, Z. G.; Yang, J. H.; Kim, J. K. Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 2014, 64, 200–247.

    Article  Google Scholar 

  34. Lee, H.; Kim, M.; Kim, I.; Lee, H. Flexible and stretchable optoelectronic devices using silver nanowires and graphene. Adv. Mater. 2016, 28, 4541–4548.

    Article  Google Scholar 

  35. Song, Y.; Fang, W. J.; Brenes, R.; Kong, J. Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today 2015, 10, 681–700.

    Article  Google Scholar 

  36. Liang, J. J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X. F.; Chen, Y. S.; Pei, Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 8, 1590–1600.

    Article  Google Scholar 

  37. Jurewicz, I.; Fahimi, A.; Lyons, P. E.; Smith, R. J.; Cann, M.; Large, M. L.; Tian, M. W.; Coleman, J. N.; Dalton, A. B. Insulator-conductor type transitions in graphene-modified silver nanowire networks: A route to inexpensive transparent conductors. Adv. Funct. Mater. 2014, 24, 7580–7587.

    Article  Google Scholar 

  38. Xu, Q. J.; Song, T.; Cui, W.; Liu, Y. Q.; Xu, W. D.; Lee, S. T.; Sun, B. Q. Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3272–3279.

    Article  Google Scholar 

  39. Dong, H.; Wu, Z. X.; Jiang, Y. Q.; Liu, W. H.; Li, X.; Jiao, B.; Abbas, W.; Hou, X. A flexible and thin graphene/ silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Interfaces 2016, 8, 31212–31221.

    Article  Google Scholar 

  40. Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  Google Scholar 

  41. Hu, M. J.; Gao, J. F.; Dong, Y. C.; Li, K.; Shan, G. C.; Yang, S. L.; Li, R. K. Y. Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 2012, 28, 7101–7106.

    Article  Google Scholar 

  42. Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M. D.; Hoemann, C. D.; Leroux, J. C.; Atkinson, B. L.; Binette, F.; Selmani, A. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000, 21, 2155–2161.

    Article  Google Scholar 

  43. Jin, Y. X.; Wang, K. Q.; Cheng, Y. R.; Pei, Q. B.; Xu, Y. X.; Xiao, F. Removable large-area ultrasmooth silver nanowire transparent composite electrode. ACS Appl. Mater. Interfaces 2017, 9, 4733–4741.

    Article  Google Scholar 

  44. Jin, Y. X.; Deng, D. Y.; Cheng, Y. R.; Kong, L. Q.; Xiao, F. Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder. Nanoscale 2014, 6, 4812–4818.

    Article  Google Scholar 

  45. Jiu, J. T.; Wang, J.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, K.; Hara, M.; Nakazawa, E.; Uchid, H. The effect of light and humidity on the stability of silver nanowire transparent electrodes. RSC Adv. 2015, 5, 27657–27664.

    Article  Google Scholar 

  46. Mayousse, C.; Celle, C.; Fraczkiewicz, A.; Simonato, J. P. Stability of silver nanowire based electrodes under environmental and electrical stresses. Nanoscale 2015, 7, 2107–2115.

    Article  Google Scholar 

  47. Deng, B.; Hsu, P. C.; Chen, G. C.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J. X.; Guo, Y. F.; Lin, L.; Zhou, Y. et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015, 15, 4206–4213.

    Article  Google Scholar 

  48. Marzbanrad, E.; Rivers, G.; Peng, P.; Zhao, B. X.; Zhou, N. Y. How morphology and surface crystal texture affect thermal stability of a metallic nanoparticle: the case of silver nanobelts and pentagonal silver nanowires. Phys. Chem. Chem. Phys. 2015, 17, 315–324.

    Article  Google Scholar 

  49. Peng, J. J.; Sun, Y.; Chen, Y. N.; Yao, Y.; Liang, Z. Q. Light and thermally induced evolutional charge transport in CH3NH3PbI3 perovskite solar cells. ACS Energy Lett. 2016, 1, 1000–1006.

    Article  Google Scholar 

  50. Sun, Q. J.; Lee, S. J.; Kang, H.; Gim, Y.; Park, H. S.; Cho, J. H. Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film. Nanoscale 2015, 7, 6798–6804.

    Article  Google Scholar 

  51. Liu, G. S.; Liu, C.; Chen, H. J.; Cao, W.; Qiu, J. S.; Shieh, H. D.; Yang, B. R. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale 2016, 8, 5507–5515.

    Article  Google Scholar 

  52. Kim, S.; Kim, S. Y.; Kim, J.; Kim, J. H. Highly reliable AgNW/PEDOT:PSS hybrid films: Efficient methods for enhancing transparency and lowering resistance and haziness. J. Mater. Chem. C 2014, 2, 5636–5644.

    Article  Google Scholar 

  53. Choi, D. Y.; Kang, H. W.; Sung, H. J.; Kim, S. S. Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013, 5, 977–983.

    Article  Google Scholar 

  54. Hirai, A.; Odani, H.; Nakajima, A. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. 1991, 26, 87–94.

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored by 59th China Postdoctoral Science Foundation (No. 2016M590318), Special Financial Grant from China Postdoctoral Science Foundation (No. 2017T100270), National Natural Science Foundation of China (Nos. 51603043 and 51673042), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. TP2015002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxi Xu or Fei Xiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Sun, Y., Wang, K. et al. Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Res. 11, 1998–2011 (2018). https://doi.org/10.1007/s12274-017-1816-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1816-8

Keywords

Navigation