Skip to main content
Log in

Prolonged and highly efficient intracellular extraction of photosynthetic electrons from single algal cells by optimized nanoelectrode insertion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Harvesting photosynthetic electrons (PEs) from plant or algal cells can be a highly efficient and environmentally friendly way of generating renewable energy. Recent work on nanoelectrode insertion into algal cells has demonstrated the possibility to directly extract PEs from living algal cells with high efficiencies. However, the instability of the inserted cells limits the practicality of this technology. Here, the impact of nanoelectrode insertion on intracellular extraction of PEs is characterized with the goal of stabilizing algal cells after nanoelectrode insertion. Using nanoelectrodes <500 nm in diameter, algal cells remained stable for over one week after insertion and continued to provide PEs through direct extraction by the inserted nanoelectrodes. After nanoelectrode insertion, a photosynthetic current density of 6 mA·cm−2, which is several fold higher than the current densities attained using approaches based on isolated thylakoid membranes or photosystem I complexes, was observed in the dark and during illumination at various light intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gust, D.; Moore, T. A. Mimicking photosynthesis. Science 1989, 244, 35–41.

    Article  Google Scholar 

  2. Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Gleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.

    Article  Google Scholar 

  3. Ryu, W.; Bai, S. J.; Park, J. S.; Huang, Z. B.; Moseley, J.; Fabian, T.; Fasching, R. J.; Grossman, A. R.; Prinz, F. B. Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system. Nano Lett. 2010, 10, 1137–1143.

    Article  Google Scholar 

  4. Rosenbaum, M.; He, Z.; Angenent, L. T. Light energy to bioelectricity: Photosynthetic microbial fuel cells. Curr. Opin. Biotechnol. 2010, 21, 259–264.

    Article  Google Scholar 

  5. McCormick, A. J.; Bombelli, P.; Scott, A. M.; Philips, A. J.; Smith, A. G.; Fisher, A. C.; Howe, C. J. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 2011, 4, 4699–4709.

    Article  Google Scholar 

  6. Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381.

    Article  Google Scholar 

  7. Malik, S.; Drott, E.; Grisdela, P.; Lee, J.; Lee, C.; Lowy, D. A.; Gray S.; Tender, L. M. A self-assembling self-repairing microbial photoelectrochemical solar cell. Energy Environ. Sci. 2009, 2, 292–298.

    Article  Google Scholar 

  8. Manocchi, A. K.; Baker, D. R.; Pendley, S. S.; Nguyen, K.; Hurley, M. M.; Bruce, B. D.; Sumner, J. J.; Lundgren, C. A. Photocurrent generation from surface assembled photosystem I on alkanethiol modified electrodes. Langmuir 2013, 29, 2412–2419.

    Article  Google Scholar 

  9. LeBlanc, G.; Chen, G. P.; Gizzie, E. A.; Jennings, G. K.; Cliffel, D. E. Enhanced photocurrents of photosystem I films on p-doped silicon. Adv. Mater. 2012, 24, 5959–5962.

    Article  Google Scholar 

  10. LeBlanc, G.; Gizzie, E.; Yang, S. Y.; Cliffel, D. E.; Jennings, G. K. Photosystem I protein films at electrode surfaces for solar energy conversion. Langmuir 2014, 30, 10990–11001.

    Article  Google Scholar 

  11. Maly, J.; Masojidek, J.; Masci, A.; Ilie, M.; Cianci, E.; Foglietti, V.; Vastrella, W.; Pilloton, R. Direct mediatorless electron transport between the monolayer of photosystem II and poly(mercapto-p-benzoquinone) modified gold electrode—New design of biosensor for herbicide detection. Biosens. Bioelectron. 2005, 21, 923–932.

    Article  Google Scholar 

  12. Terasaki, N.; Iwai, M.; Yamamoto, N.; Hiraga, T.; Yamada, S.; Inoue, Y. Photocurrent generation properties of Histagphotosystem II immobilized on nanostructured gold electrode. Thin Solid Films 2008, 516, 2553–2557.

    Article  Google Scholar 

  13. Yehezkeli, O.; Tel-Vered, R.; Michaeli, D.; Nechushtai, R.; Willner, I. Photosystem I (PSI)/photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. Small 2013, 9, 2970–2978.

    Article  Google Scholar 

  14. Yehezkeli, O.; Tel-Vered, R.; Wasserman, J.; Trifonov, A.; Michaeli, D.; Nechushtai, R.; Willner, I. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 2012, 3, 742.

    Article  Google Scholar 

  15. Feng, X. Y.; Jia, Y.; Cai, P.; Fei, J. B.; Li, J. B. Coassembly of photosystem II and ATPase as artificial chloroplast for light-driven ATP synthesis. ACS Nano 2016, 10, 556–561.

    Article  Google Scholar 

  16. Li, J.; Feng, X. Y.; Fei, J. B.; Cai, P.; Huang, J. G.; Li, J. B. Integrating photosystem II into a porous TiO2 nanotube network toward highly efficient photo-bioelectrochemical cells. J. Mater. Chem. A 2016, 4, 12197–12204.

    Article  Google Scholar 

  17. McKelvey, K.; Martin, S.; Robinson, C.; Unwin, P. R. Quantitative local photosynthetic flux measurements at isolated chloroplasts and thylakoid membranes using scanning electrochemical microscopy (SECM). J. Phys. Chem. B 2013, 117, 7878–7888.

    Article  Google Scholar 

  18. Calkins, J. O.; Umasankar, Y.; O’Neill, H.; Ramasamy, R. P. High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy Environ. Sci. 2013, 6, 1891–1900.

    Article  Google Scholar 

  19. Hasan, K.; Dilgin, Y.; Emek, S. C.; Tavahodi, M.; Åkerlund, H. E.; Albertsson, P. Å.; Gorton, L. Photoelectrochemical communication between thylakoid membranes and gold electrodes through different quinone derivatives. ChemElectroChem 2014, 1, 131–139.

    Article  Google Scholar 

  20. Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098–1101.

    Article  Google Scholar 

  21. Gorby, Y. A.; Yanina, S.; McLean, J. S.; Rosso, K. M.; Moyles, D.; Dohnalkova, A.; Beveridge, T. J.; Chang, I. S.; Kim, B. H.; Kim, K. S. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103, 11358–11363.

    Article  Google Scholar 

  22. Bradley, R. W.; Bombelli, P.; Rowden, S. J. L.; Howe, C. J. Biological photovoltaics: Intra-and extra-cellular electron transport by cyanobacteria. Biochem. Soc. Trans. 2012, 40, 1302–1307.

    Article  Google Scholar 

  23. Logan, B. E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192.

    Article  Google Scholar 

  24. Bombelli, P.; Bradley, R. W.; Scott, A. M.; Philips, A. J.; McCormick, A. J.; Cruz, S. M.; Anderson, A.; Yunus, K.; Bendall, D. S.; Cameron, P. J. et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci. 2011, 4, 4690–4698.

    Google Scholar 

  25. Esper, B.; Badura, A.; Rögner, M. Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci. 2006, 11, 543–549.

    Article  Google Scholar 

  26. Ciesielski, P. N.; Hijazi, F. M.; Scott, A. M.; Faulkner, C. J.; Beard, L.; Emmett, K.; Rosenthal, S. J.; Cliffel, D.; Jennings, G. K. Photosystem I-based biohybrid photoelectrochemical cells. Bioresource Technol. 2010, 101, 3047–3053.

    Article  Google Scholar 

  27. Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 2012, 7, 180–184.

    Article  Google Scholar 

  28. Na, Y. R.; Kim, S. Y.; Gaublomme, J. T.; Shalek, A. K.; Jorgolli, M.; Park, H.; Yang, E. G. Probing enzymatic activity inside living cells using a nanowire–cell “sandwich” assay. Nano Lett. 2013, 13, 153–158.

    Article  Google Scholar 

  29. Xie, X.; Xu, A. M.; Leal-Ortiz, S.; Cao, Y. H.; Garner, C. C.; Melosh, N. A. Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 2013, 7, 4351–4358.

    Article  Google Scholar 

  30. Hanson, L.; Lin, Z. C.; Xie, C.; Cui, Y.; Cui, B. X. Characterization of the cell–nanopillar interface by transmission electron microscopy. Nano Lett. 2012, 12, 5815–5820.

    Article  Google Scholar 

  31. Xie, X.; Xu, A. M.; Angle, M. R.; Tayebi, N.; Verma, P.; Melosh, N. A. Mechanical model of vertical nanowire cell penetration. Nano Lett. 2013, 13, 6002–6008.

    Article  Google Scholar 

  32. Xu, A. M.; Aalipour, A.; Leal-Ortiz, S.; Mekhdjian, A. H.; Xie, X.; Dunn, A. R.; Garner, C. C.; Melosh, N. A. Quantification of nanowire penetration into living cells. Nat. Commun. 2014, 5, 3613.

    Google Scholar 

  33. Almquist, B. D.; Melosh, N. A. Fusion of biomimetic stealth probes into lipid bilayer cores. Proc. Natl Acad. Sci. USA 2010, 107, 5815–5820.

    Article  Google Scholar 

  34. Almquist, B. D.; Verma, P.; Cai, W.; Melosh, N. A. Nanoscale patterning controls inorganic–membrane interface structure. Nanoscale 2011, 3, 391–400.

    Article  Google Scholar 

  35. Falk, S.; Leverenz, J. W.; Samuelsson, G.; Öquist, G. Changes in photosystem II fluorescence in Chlamydomonas reinhardtii exposed to increasing levels of irradiance in relationship to the photosynthetic response to light. Photosynth. Res. 1992, 31, 31–40.

    Article  Google Scholar 

  36. Yang, Y.; Gao, K. S. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J. Appl. Phycol. 2003, 15, 379–389.

    Article  Google Scholar 

  37. Mershin, A.; Matsumoto, K.; Kaiser, L.; Yu, D. Y.; Vaughn, M.; Nazeeruddin, M. K.; Bruce, B. D.; Graetzel, M.; Zhang, S. G. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci. Rep. 2012, 2, 234.

    Article  Google Scholar 

  38. Meunier, C. F.; Van Cutsem, P.; Kwon, Y. U.; Su, B. L. Thylakoids entrapped within porous silica gel: Towards living matter able to convert energy. J. Mater. Chem. 2009, 19, 1535–1542.

    Article  Google Scholar 

  39. Sjöholm, K. H.; Rasmussen, M.; Minteer, S. D. Bio-solar cells incorporating catalase for stabilization of thylakoid bioelectrodes during direct photoelectrocatalysis. ECS Electrochem. Lett. 2012, 1, G7–G9.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial supports by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea government (No. 2011-0020285) as well as by the Center for Advanced Meta-Materials (CAMM) funded by the MSIP as Global Frontier Project (No. CAMM-2014M3A6B3063716). The authors thank Jae Hyung Yun at Yonsei University for the help with fabrication of glass micropipettes. The contribution of A. R. G. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (No. DE–SC0001060) and the National Science Foundation (No. MCB–0951094)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WonHyoung Ryu.

Additional information

Electronic Supplementary Material: Supplementary material (configuration of horizontally-tilted cantilever nanoelectrode system and the estimation of activated area of electrode) is available in the online version of this article at https://doi.org/10.1007/s12274-017-1642-z.

Electronic Supplementary Material

12274_2017_1642_MOESM1_ESM.pdf

Prolonged and highly efficient intracellular extraction of photosynthetic electrons from single algal cells by optimized nanoelectrode insertion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, H., Kim, Y.J., Han, M. et al. Prolonged and highly efficient intracellular extraction of photosynthetic electrons from single algal cells by optimized nanoelectrode insertion. Nano Res. 11, 397–409 (2018). https://doi.org/10.1007/s12274-017-1642-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1642-z

Keywords

Navigation