Skip to main content
Log in

Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Unlike graphene sheets, graphene nanoribbons (GNRs) can exhibit semiconducting band gap characteristics that can be tuned by controlling impurity doping and the GNR widths and edge structures. However, achieving such control is a major challenge in the fabrication of GNRs. Chevron-type GNRs were recently synthesized via surface-assisted polymerization of pristine or N-substituted oligophenylene monomers. In principle, GNR heterojunctions can be fabricated by mixing two different monomers. In this paper, we report the fabrication and characterization of chevron-type GNRs using sulfur-substituted oligophenylene monomers to produce GNRs and related heterostructures for the first time. First-principles calculations show that the GNR gaps can be tailored by applying different sulfur configurations from cyclodehydrogenated isomers via debromination and intramolecular cyclodehydrogenation. This feature should enable a new approach for the creation of multiple GNR heterojunctions by engineering their sulfur configurations. These predictions have been confirmed via scanning tunneling microscopy and scanning tunneling spectroscopy. For example, we have found that the S-containing GNRs contain segments with distinct band gaps, i.e., a sequence of multiple heterojunctions that results in a sequence of quantum dots. This unusual intraribbon heterojunction sequence may be useful in nanoscale optoelectronic applications that use quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dutta, S.; Pati, S. K. et al., Novel properties of graphene nanoribbons: A review, J. Mater. Chem. 2010, 20, 8207–8223.

    Article  Google Scholar 

  2. Kim, W. Y.; Kim, K. S. et al., Prediction of very large values of magnetoresistance in a graphene nanoribbon device, Nat. Nanotechnol. 2008, 3, 408–412.

    Article  Google Scholar 

  3. Koch, M.; Ample, F.; Joachim, C.; Grill, L. et al., Voltage-dependent conductance of a single graphene nanoribbon, Nat. Nanotechnol. 2012, 7, 713–717.

    Article  Google Scholar 

  4. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. et al., Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 2008, 319, 1229–1232.

    Article  Google Scholar 

  5. Shifrina, Z. B.; Averina, M. S.; Rusanov, A. L.; Wagner, M.; Mü llen, K. et al., Branched polyphenylenes by repetitive Diels–Alder cycloaddition, Macromolecules 2000, 33, 3525–3529.

    Article  Google Scholar 

  6. Wu, X. J.; Zeng, X. C. et al., Sawtooth-like graphene nanoribbon, Nano Res. 2008, 1, 40–45.

    Article  Google Scholar 

  7. Bets, K. V.; Yakobson, B. I. et al., Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons, Nano Res. 2009, 2, 161–166.

    Article  Google Scholar 

  8. Huang, H.; Wei, D. C.; Sun, J. T.; Wong, S. L.; Feng, Y. P.; Castro Neto, A. H.; Wee, A. T. S. et al., Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons, Sci. Rep. 2012, 2, 983.

    Article  Google Scholar 

  9. Son, Y. W.; Cohen, M. L.; Louie, S. G. et al., Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 2006, 97, 216803.

    Article  Google Scholar 

  10. Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. et al., Quasiparticle energies and band gaps in graphene nanoribbons, Phys. Rev. Lett. 2007, 99, 186801.

    Article  Google Scholar 

  11. Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. et al., Tuning the band gap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 2013, 7, 6123–6128.

    Article  Google Scholar 

  12. Ritter, K. A.; Lyding, J. W. et al., The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 2009, 8, 235–242.

    Article  Google Scholar 

  13. Bronner, C.; Stremlau, S.; Gille, M.; Brauße, F.; Haase, A.; Hecht, S.; Tegeder, P. et al., Aligning the band gap of graphene nanoribbons by monomer doping, Angew. Chem., Int. Ed. 2013, 52, 4422–4425.

    Article  Google Scholar 

  14. Martins, T. B.; Miwa, R. H.; da Silva, A. J. R.; Fazzio, A. et al., Electronic and transport properties of boron-doped graphene nanoribbons, Phys. Rev. Lett. 2007, 98, 196803.

    Article  Google Scholar 

  15. Zhang, Y.; Zhang, Y. F.; Li, G.; Lu, J. C.; Lin, X.; Du, S. X.; Berger, R.; Feng, X. L.; Müllen, K.; Gao, H. J. et al., Direct visualization of atomically precise nitrogen-doped graphene nanoribbons, Appl. Phys. Lett. 2014, 105, 023101.

    Article  Google Scholar 

  16. Li, Y. F.; Zhou, Z.; Shen, P. W.; Chen, Z. F. et al., Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons, ACS Nano 2009, 3, 1952–1958.

    Article  Google Scholar 

  17. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. et al., Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 2010, 466, 470–473.

    Article  Google Scholar 

  18. Narita, A.; Feng, X. L.; Müllen, K. et al., Bottom-up synthesis of chemically precise graphene nanoribbons, Chem. Rec. 2015, 15, 295–309.

    Article  Google Scholar 

  19. Narita, A.; Verzhbitskiy, I. A.; Frederickx, W.; Mali, K. S.; Jensen, S. A.; Hansen, M. R.; Bonn, M.; De Feyter, S.; Casiraghi, C.; Feng, X. L. et al. et al., Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with nearinfrared absorption, ACS Nano 2014, 8, 11622–11630.

    Article  Google Scholar 

  20. Liang, L. B.; Meunier, V. et al., Atomically precise graphene nanoribbon heterojunctions for excitonic solar cells, J. Phys. Chem. C 2015, 119, 775–783.

    Article  Google Scholar 

  21. Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; de Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. et al., Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions, Nat. Nanotechnol. 2015, 10, 156–160.

    Article  Google Scholar 

  22. Perdew, J. P.; Burke, K.; Ernzerhof, M. et al., Generalized gradient approximation made simple, Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  23. Kresse, G.; Furthmüller, J. et al., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  24. Kresse, G.; Hafner, J. et al., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  25. Tersoff, J.; Hamann, D. R. et al., Theory of the scanning tunneling microscope, Phys. Rev. B 1985, 31, 805–813.

    Article  Google Scholar 

  26. Saleh, M.; Baumgarten, M.; Mavrinskiy, A.; Schäfer, T.; Müllen, K. et al., Triphenylene-based polymers for blue polymeric light emitting diodes, Macromolecules 2010, 43, 137–143.

    Article  Google Scholar 

Download references

Acknowledgements

Work at IOP and UCAS was supported by grants from the National Key Research and Development Program of China (No. 2016YFA0202300), the National Natural Science Foundation of China (Nos. 61390501, 61471337, 51210003, and 51325204), National Basic Research Program of China (No. 2013CBA01600), the CAS Pioneer Hundred Talents Program, the Transregional Collaborative Research Center TRR 61, and the Chinese Academy of Sciences and the National Supercomputing Center in Tianjin. A portion of the research was performed in CAS Key Laboratory of Vacuum Physics. Work at the Max Planck Institute for Polymer Research were supported by the EC graphene flagship (No. CNECT-ICT-604391) and ERC NANOGRAPH. Work at Vanderbilt University was supported by Department of Energy grant DE-FG02-09ER46554 and by the McMinn Endowment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinliang Feng or Shixuan Du.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Zhang, Y., Li, G. et al. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 10, 3377–3384 (2017). https://doi.org/10.1007/s12274-017-1550-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1550-2

Keywords

Navigation