Skip to main content
Log in

Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing low-cost and high-efficiency photocatalysts for hydrogen production from solar water splitting is intriguing but challenging. In this study, unique one-dimensional (1D) multi-node MoS2/CdS hetero-nanowires (NWs) for efficient visible-light photocatalytic H2 evolution are synthesized via a facile hydrothermal method. Flower-like sheaths are assembled from numerous defect-rich O-incorporated {0001} MoS2 ultrathin nanosheets (NSs), and {112̅0}-facet surrounded CdS NW stems are grown preferentially along the c-axis. Interestingly, the defects in the MoS2 NSs provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2 NSs. Moreover, the recombination of photoinduced charge carriers is significantly inhibited by the heterojunction formed between the MoS2 NSs and CdS NWs. Therefore, in the absence of noble metals as co-catalysts, the 1D MoS2 NS/CdS NW hybrids exhibit an excellent H2-generation rate of 10.85 mmol·g–1·h–1 and a quantum yield of 22.0% at λ = 475 nm, which is far better than those of Pt/CdS NWs, pure MoS2 NSs, and CdS NWs as well as their physical mixtures. Our results contribute to the rational construction of highly reactive nanostructures for various catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.

    Article  Google Scholar 

  2. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  3. Peng, T. Y.; Li, K.; Zeng, P.; Zhang, Q. G.; Zhang, X. G. Enhanced photocatalytic hydrogen production over graphene oxide–cadmium sulfide nanocomposite under visible light irradiation. J. Phys. Chem. C 2012, 116, 22720–22726.

    Article  Google Scholar 

  4. Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 1210–1214.

    Article  Google Scholar 

  5. Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.

    Article  Google Scholar 

  6. Lu, X.; Luo, X.; Zhang, J.; Quek, S. Y.; Xiong, Q. H. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 2016, 9, 3559–3597.

    Article  Google Scholar 

  7. Ma, X. Y.; Li, J. Q.; An, C. H.; Feng, J.; Chi, Y. H.; Liu, J. X.; Zhang, J.; Sun, Y. G. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res. 2016, 9, 2284–2293.

    Article  Google Scholar 

  8. Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183.

    Article  Google Scholar 

  9. Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Dö blinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.

    Article  Google Scholar 

  10. Du, Y. P.; Chen, B.; Yin, Z. Y.; Liu, Z. Q.; Zhang, H. Phosphine-free, low-temperature synthesis of tetrapod-shaped CdS and its hybrid with Au nanoparticles. Small 2014, 10, 4727–4734.

    Article  Google Scholar 

  11. Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from welldefined reactive crystal planes. J. Catal. 2005, 229, 206–212.

    Article  Google Scholar 

  12. Chen, W.; Kuang, Q.; Xie, Z. X. Morphology evolution of NaTaO3 submicrometer single-crystals: From cubes to quasi-spheres. Sci. China Mater. 2015, 58, 281–288.

    Article  Google Scholar 

  13. Lai, X.-Y.; Wang, C.-R.; Jin, Q.; Yu, R.-B.; Wang, D. Synthesis and photocatalytic activity of hierarchical flower-like SrTiO3 nanostructure. Sci. China Mater. 2015, 58, 192–197.

    Article  Google Scholar 

  14. Kuang, Q.; Wang, X.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications. Acc. Chem. Res. 2014, 47, 308–318.

    Article  Google Scholar 

  15. Jiang, Q. N.; Jiang, Z. Y.; Zhang, L.; Lin, H. X.; Yang, N.; Li, H.; Liu, D. Y.; Xie, Z. X.; Tian, Z. Q. Synthesis and high electrocatalytic performance of hexagram shaped gold particles having an open surface structure with kinks. Nano Res. 2011, 4, 612–622.

    Article  Google Scholar 

  16. Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

    Article  Google Scholar 

  17. Zhang, Z. C.; Liu, Y.; Chen, B.; Gong, Y.; Gu, L.; Fan, Z. X.; Yang, N. L.; Lai, Z. C.; Chen, Y.; Wang, J. et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 2016, 28, 10282–10286.

    Article  Google Scholar 

  18. Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

    Article  Google Scholar 

  19. Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4h/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.

    Article  Google Scholar 

  20. Yang, S. Y.; Shim, G. W.; Seo, S.-B.; Choi, S.-Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255–262.

    Article  Google Scholar 

  21. Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

    Article  Google Scholar 

  22. Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

    Article  Google Scholar 

  23. Liu, D. B.; Xu, W. Y.; Liu, Q.; He, Q.; Haleem, Y. A.; Wang, C. D.; Xiang, T.; Zou, C. W.; Chu, W. S.; Zhong, J. et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Res. 2016, 9, 2079–2087.

    Article  Google Scholar 

  24. Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177.

    Article  Google Scholar 

  25. Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014, 8, 7078–7087.

    Article  Google Scholar 

  26. Wu, N. Q.; Wang, J.; Tafen de, N.; Wang, H.; Zheng, J. G.; Lewis, J. P.; Liu, X. G.; Leonard, S. S.; Manivannan, A. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J. Am. Chem. Soc. 2010, 132, 6679–6685.

    Article  Google Scholar 

  27. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    Article  Google Scholar 

  28. Zhou, W. J.; Yin, Z. Y.; Du, Y. P.; Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, H.; Wang, J. Y.; Zhang, H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 2013, 9, 140–147.

    Article  Google Scholar 

  29. He, J.; Chen, L.; Wang, F.; Liu, Y.; Chen, P.; Au, C. T.; Yin, S. F. CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution. ChemSusChem 2016, 9, 624–630.

    Article  Google Scholar 

  30. Xing, X. N.; Zhang, Q.; Huang, Z.; Lu, Z. J.; Zhang, J. B.; Li, H. Q.; Zeng, H. B.; Zhai, T. Y. Strain driven spectral broadening of Pb ion exchanged CdS nanowires. Small 2016, 12, 874–881.

    Article  Google Scholar 

  31. Cao, B. L.; Jiang, Y.; Wang, C.; Wang, W. H.; Wang, L. Z.; Niu, M.; Zhang, W. J.; Li, Y. Q.; Lee, S. T. Synthesis and lasing properties of highly ordered CdS nanowire arrays. Adv. Funct. Mater. 2007, 17, 1501–1506.

    Article  Google Scholar 

  32. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  Google Scholar 

  33. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    Article  Google Scholar 

  34. Seguin, L.; Figlarz, M.; Cavagnat, R.; Lassègues, J. C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A: Molecul. Biomol. Spectr. 1995, 51, 1323–1344.

    Article  Google Scholar 

  35. Weng, B.; Zhang, X.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: Synthesis, formation mechanism, and photocatalytic application. Langmuir 2015, 31, 4314–4322.

    Article  Google Scholar 

  36. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  37. Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancyinduced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

    Article  Google Scholar 

  38. Li, G. S.; Boerio-Goates, J.; Woodfield, B. F.; Li, L. P. Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals. Appl. Phys. Lett. 2004, 85, 2059–2061.

    Article  Google Scholar 

  39. Ayyub, P.; Palkar, V. R.; Chattopadhyay, S.; Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 1995, 51, 6135–6138.

    Article  Google Scholar 

  40. Li, X. D.; Li, W.; Li, M. C.; Cui, P.; Chen, D. H.; Gengenbach, T.; Chu, L. H.; Liu, H. Y.; Song, G. S. Glucose-assisted synthesis of the hierarchical TiO2 nanowire@MoS2 nanosheet nanocomposite and its synergistic lithium storage performance. J. Mater. Chem. A 2015, 3, 2762–2769.

    Article  Google Scholar 

  41. Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Kipp, T.; Cingolani, R.; Cozzoli, P. D. Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J. Am. Chem. Soc. 2008, 130, 11223–11233.

    Article  Google Scholar 

  42. Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195–1208.

    Article  Google Scholar 

  43. Cheng, H. M.; Ma, J. M.; Zhao, Z. G.; Qi, L. M. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 1995, 7, 663–671.

    Article  Google Scholar 

  44. Sau, T. K.; Rogach, A. L. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22, 1781–1804.

    Article  Google Scholar 

  45. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  Google Scholar 

  46. Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26, 8163–8168.

    Article  Google Scholar 

  47. Chang, Y.-H.; Nikam, R. D.; Lin, C.-T.; Huang, J.-K.; Tseng, C.-C.; Hsu, C.-L.; Cheng, C.-C.; Su, C.-Y.; Li, L.-J.; Chua, D. H. C. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2014, 6, 17679–17685.

    Article  Google Scholar 

  48. Xiong, J. H.; Liu, Y. H.; Wang, D. K.; Liang, S. J.; Wu, W. M.; Wu, L. An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. J. Mater. Chem. A 2015, 3, 12631–12635.

    Article  Google Scholar 

  49. Louis, C.; Che, M. EPR investigation of the coordination sphere of molybdenum(5+) ions on thermally reduced silicasupported molybdenum catalysts prepared by the grafting method. J. Phys. Chem. 1987, 91, 2875–2883.

    Article  Google Scholar 

  50. Blinc, R.; Cevc, P.; Mrzel, A.; Arcon, D.; Remškar, M.; Milia, F.; Laguta, V. V. EPR spectra of MoS2/C60. Phys. Status Solidi (B) 2010, 247, 3033–3034.

    Article  Google Scholar 

  51. Majeed, I.; Nadeem, M. A.; Al-Oufi, M.; Nadeem, M. A.; Waterhouse, G. I. N.; Badshah, A.; Metson, J. B.; Idriss, H. On the role of metal particle size and surface coverage for photo-catalytic hydrogen production: A case study of the Au/CdS system. Appl. Catal. B: Environ. 2016, 182, 266–276.

    Article  Google Scholar 

  52. Gao, P.; Liu, J.; Sun, D. D.; Ng, W. Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J. Hazard. Mater. 2013, 250–251, 412–420.

    Article  Google Scholar 

  53. Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 2011, 5, 7100–7107.

    Article  Google Scholar 

  54. Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267.

    Article  Google Scholar 

  55. Zhang, J.; Zhu, Z. P.; Feng, X. L. Construction of twodimensional MoS2/CdS p–n nanohybrids for highly efficient photocatalytic hydrogen evolution. Chem.—Eur. J. 2014, 20, 10632–10635.

    Article  Google Scholar 

  56. Zhuang, T. T.; Liu, Y.; Sun, M.; Jiang, S. L.; Zhang, M. W.; Wang, X. C.; Zhang, Q.; Jiang, J.; Yu, S. H. A unique ternary semiconductor-(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 127, 11657–11662.

    Article  Google Scholar 

  57. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  58. Bell, N. J.; Ng, Y. H.; Du, A. J.; Coster, H.; Smith, S. C.; Amal, R. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2- reduced graphene oxide composite. J. Phys. Chem. C 2011, 115, 6004–6009.

    Article  Google Scholar 

  59. Wu, T.; Zhang, Q.; Hou, Y.; Wang, L.; Mao, C. Y.; Zheng, S.-T.; Bu, X. H.; Feng, P. Y. Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response. J. Am. Chem. Soc. 2013, 135, 10250–10253.

    Article  Google Scholar 

  60. Kim, E. S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang, J. W.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 2013, 135, 5375–5383.

    Article  Google Scholar 

  61. Thurston, T. R.; Wilcoxon, J. P. Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J. Phys. Chem. B 1999, 103, 11–17.

    Article  Google Scholar 

  62. Meng, F. K.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 2013, 135, 10286–10289.

    Article  Google Scholar 

  63. Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive a-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503–3509.

    Article  Google Scholar 

  64. Xu, B.; He, P. L.; Liu, H. L.; Wang, P. P.; Zhou, G.; Wang, X. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem., Int. Ed. 2014, 53, 2339–2343.

    Article  Google Scholar 

  65. Bai, Y.; Ye, L. Q.; Wang, L.; Shi, X.; Wang, P. Q.; Bai, W.; Wong, P. K. g-C3N4/Bi4O5I2 heterojunction with I3 -/I- redox mediator for enhanced photocatalytic CO2 conversion. Appl. Catal. B: Environ. 2016, 194, 98–104.

    Article  Google Scholar 

  66. Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhang, Y. B. Uncovering the key role of the Fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (metal = Cu, Ag, Au). ACS Appl. Mater. Interfaces 2016, 8, 2111–2119.

    Article  Google Scholar 

  67. Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21431003 and 21521091) and China Ministry of Science and Technology (No. 2016YFA0202801). We also thank Dr. Lina Zhang and Ms. Xiaohua Gu for their kind help with the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Li, Y., Li, H. et al. Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Res. 10, 1377–1392 (2017). https://doi.org/10.1007/s12274-017-1497-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1497-3

Keywords

Navigation