Skip to main content
Log in

Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate a facile hydrothermal one-pot synthesis method for producing single crystalline mesoporous PtPd bimetallic nanoparticles with a hollow interior and porous surface structure in the presence of Br and I ions. The formation process analysis indicated that the coexistence of Br and I ions is responsible for the formation of the novel bimetallic nanoparticles. The changes in the reduction potential of Pt and Pd metal ions achieved by the coordination with different halide ions resulted in the formation of hollow interiors as a galvanic reaction between Pd2+ and Pt4+ ions occurred. In addition, the size of the mesoporous PtPd nanoparticles can be well controlled by slightly changing the amount of I ions used. The electrochemical tests indicated that the assynthesized single crystalline mesoporous PtPd hollow nanoparticles exhibited enhanced catalytic properties toward methanol and ethanol oxidation reactions as compared with the commercial Pt black and Pt/C materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jayashree, R. S.; Spendelow, J. S.; Yeom, J.; Rastogi, C.; Shannon, M. A.; Kenis, P. J. A. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells. Electrochim. Acta 2005, 50, 4674–4682.

    Article  Google Scholar 

  2. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  3. Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. D. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J. Am. Chem. Soc. 2008, 130, 5406–5407.

    Article  Google Scholar 

  4. Yu, X. W.; Pickup, P. G. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008, 182, 124–132.

    Article  Google Scholar 

  5. Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797–9806.

    Article  Google Scholar 

  6. Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.

    Article  Google Scholar 

  7. Zhu, E. B.; Li, Y. J.; Chiu, C. Y.; Huang, X. Q.; Li, M. F.; Zhao, Z. P.; Liu, Y.; Duan, X. F.; Huang, Y. In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. Nano Res. 2016, 9, 149–157.

    Article  Google Scholar 

  8. Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.

    Article  Google Scholar 

  9. Liu, M. M.; Lu, Y. Z.; Chen, W. PdAg nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells. Adv. Funct. Mater. 2013, 23, 1289–1296.

    Article  Google Scholar 

  10. Lu, Y. Z.; Chen, W. Nanoneedle-covered Pd-Ag nanotubes: High electrocatalytic activity for formic acid oxidation. J. Phys. Chem. C 2010, 114, 21190–21200.

    Article  Google Scholar 

  11. Lu, Y. Z.; Chen, W. PdAg alloy nanowires: Facile one-step synthesis and high electrocatalytic activity for formic acid oxidation. ACS Catal. 2012, 2, 84–90.

    Article  Google Scholar 

  12. Lu, Y. Z.; Jiang, Y. Y.; Gao, X. H.; Wang, X. D.; Chen, W. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2014, 136, 11687–11697.

    Article  Google Scholar 

  13. Lu, Y. Z.; Jiang, Y. Y.; Gao, X. H.; Wang, X. D.; Chen, W. Highly active and durable PdAg@Pd core–shell nanoparticles as fuel-cell electrocatalysts for the oxygen reduction reaction. Part. Part. Syst. Charact. 2016, 33, 560–568.

    Article  Google Scholar 

  14. Adams, B. D.; Wu, G. S.; Nigro, S.; Chen, A. C. Facile synthesis of Pd−Cd nanostructures with high capacity for hydrogen storage. J. Am. Chem. Soc. 2009, 131, 6930–6931.

    Article  Google Scholar 

  15. Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. Controlled formation of concave tetrahedral/ trigonal bipyramidal palladium nanocrystals. J. Am. Chem. Soc. 2009, 131, 13916–13917.

    Article  Google Scholar 

  16. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  Google Scholar 

  17. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2013, 52, 12337–12340.

    Article  Google Scholar 

  18. Yang, S. C.; Qiu, P. T.; Yang, G. Graphene induced formation of single crystal Pt nanosheets through 2-dimensional aggregation and sintering of nanoparticles in molten salt medium. Carbon 2014, 77, 1123–1131.

    Article  Google Scholar 

  19. Liu, X. J.; Cui, C. H.; Li, H. H.; Lei, Y.; Zhuang, T. T.; Sun, M.; Arshad, M. N.; Albar, H. A.; Sobahi, T. R.; Yu, S. H. Hollow ternary PtPdCu nanoparticles: A superior and durable cathodic electrocatalyst. Chem. Sci. 2015, 6, 3038–3043.

    Article  Google Scholar 

  20. Yang, S. C.; Luo, X. Mesoporous nano/micro noble metal particles: Synthesis and applications. Nanoscale 2014, 6, 4438–4457.

    Article  Google Scholar 

  21. Linares, N.; Silvestre-Albero, A. M.; Serrano, E.; Silvestre-Albero, J.; García-Martínez, J. Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 2014, 43, 7681–7717.

    Article  Google Scholar 

  22. You, H. J.; Yang, S. C.; Ding, B. J.; Yang, H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 2013, 42, 2880–2904.

    Article  Google Scholar 

  23. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

    Article  Google Scholar 

  24. Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J. Y.; Xie, Z. X.; Xia, Y. N. Pt-based icosahedral nanocages: Using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. Nano Lett. 2016, 16, 1467–1471.

    Article  Google Scholar 

  25. He, L. L.; Song, P.; Wang, A. J.; Zheng, J. N.; Mei, L. P.; Feng, J. J. A general strategy for the facile synthesis of AuM (M = Pt/Pd) alloyed flowerlike-assembly nanochains for enhanced oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 5352–5359.

    Article  Google Scholar 

  26. Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun. 2015, 51, 9722–9725.

    Article  Google Scholar 

  27. Li, H. H.; Ma, S. Y.; Fu, Q. Q.; Liu, X. J.; Wu, L.; Yu, S. H. Scalable bromide-triggered synthesis of Pd@Pt core–shell ultrathin nanowires with enhanced electrocatalytic performance toward oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 7862–7868.

    Article  Google Scholar 

  28. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  29. Lim, Y.; Kim, S. K.; Lee, S. C.; Choi, J.; Nahm, K. S.; Yoo, S. J.; Kim, P. One-step synthesis of carbon-supported Pd@Pt/C core–shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability. Nanoscale 2014, 6, 4038–4042.

    Article  Google Scholar 

  30. Wu, H.; Mei, S. J.; Cao, X. Q.; Zheng, J. W.; Lin, M.; Tang, J. X.; Ren, F. F.; Du, Y. K.; Pan, Y.; Gu, H. W. Facile synthesis of Pt/Pd nanodendrites for the direct oxidation of methanol. Nanotechnology 2014, 25, 195702.

    Article  Google Scholar 

  31. Zhao, H. D.; Yu, C. Z.; You, H. J.; Yang, S. C.; Guo, Y.; Ding, B. J.; Song, X. P. A green chemical approach for preparation of PtxCuy nanoparticles with a concave surface in molten salt for methanol and formic acid oxidation reactions. J. Mater. Chem. 2012, 22, 4780–4789.

    Article  Google Scholar 

  32. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

    Article  Google Scholar 

  33. Lu, Y. Z.; Chen, W. One-pot synthesis of heterostructured Pt-Ru nanocrystals for catalytic formic acid oxidation. Chem. Commun. 2011, 47, 2541–2543.

    Article  Google Scholar 

  34. Kuang, Y.; Zhang, Y.; Cai, Z.; Feng, G.; Jiang, Y. Y.; Jin, C. H.; Luo, J.; Sun, X. M. Single-crystalline dendritic bimetallic and multimetallic nanocubes. Chem. Sci. 2015, 6, 7122–7129.

    Article  Google Scholar 

  35. Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.

    Article  Google Scholar 

  36. Lu, Y. Z.; Jiang, Y. Y.; Chen, W. PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2013, 2, 836–844.

    Article  Google Scholar 

  37. Lu, Y. Z.; Jiang, Y. Y.; Chen, W. Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation. Nanoscale 2014, 6, 3309–3315.

    Article  Google Scholar 

  38. Chen, Y.; Yang, J.; Yang, Y.; Peng, Z. Y.; Li, J. H.; Mei, T.; Wang, J. Y.; Hao, M.; Chen, Y. L.; Xiong, W. L. et al. A facile strategy to synthesize three-dimensional Pd@Pt core–shell nanoflowers supported on graphene nanosheets as enhanced nanoelectrocatalysts for methanol oxidation. Chem. Commun. 2015, 51, 10490–10493.

    Article  Google Scholar 

  39. Zhang, H.; Jin, M. S.; Liu, H. Y.; Wang, J. G.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Facile synthesis of Pd–Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 2011, 5, 8212–8222.

    Article  Google Scholar 

  40. Lu, Y. Z.; Jiang, Y. Y.; Wu, H. B.; Chen, W. Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J. Phys. Chem. C 2013, 117, 2926–2938.

    Article  Google Scholar 

  41. Lv, J. J.; Mei, L. P.; Weng, X. X.; Wang, A. J.; Chen, L. L.; Liu, X. F.; Feng, J. J. Facile synthesis of three-dimensional Pt-Pd alloyed multipods with enhanced electrocatalytic activity and stability for ethylene glycol oxidation. Nanoscale 2015, 7, 5699–5705.

    Article  Google Scholar 

  42. Li, S. S.; Lv, J. J.; Teng, L. N.; Wang, A. J.; Chen, J. R.; Feng, J. J. Facile synthesis of PdPt@Pt nanorings supported on reduced graphene oxide with enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 10549–10555.

    Article  Google Scholar 

  43. Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd−Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.

    Article  Google Scholar 

  44. Kim, Y.; Lee, Y. W.; Kim, M.; Han, S. W. One-pot synthesis and electrocatalytic properties of Pd@Pt core–shell nanocrystals with tailored morphologies. Chem.—Eur. J. 2014, 20, 7901–7905.

    Article  Google Scholar 

  45. Zhang, J. F.; Wan, L.; Liu, L.; Deng, Y. D.; Zhong, C.; Hu, W. B. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale 2016, 8, 3962–3972.

    Article  Google Scholar 

  46. Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.

    Article  Google Scholar 

  47. Jiang, B.; Li, C. L.; Malgras, V.; Imura, M.; Tominaka, S.; Yamauchi, Y. Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 2016, 7, 1575–1581.

    Article  Google Scholar 

  48. Qu, X. M.; Cao, Z. M.; Zhang, B. W.; Tian, X. C.; Zhu, F. C.; Zhang, Z. C.; Jiang, Y. X.; Sun, S. G. One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem. Commun. 2016, 52, 4493–4496.

    Article  Google Scholar 

  49. Nogami, M.; Koike, R.; Jalem, R.; Kawamura, G.; Yang, Y.; Sasaki, Y. Synthesis of porous single-crystalline platinum nanocubes composed of nanoparticles. J. Phys. Chem. Lett. 2010, 1, 568–571.

    Article  Google Scholar 

  50. Lv, J. J.; Zheng, J. N.; Li, S. S.; Chen, L. L.; Wang, A. J.; Feng, J. J. Facile synthesis of Pt–Pd nanodendrites and their superior electrocatalytic activity. J. Mater. Chem. A 2014, 2, 4384–4390.

    Article  Google Scholar 

  51. Qi, Y.; Bian, T.; Choi, S. I.; Jiang, Y. Y.; Jin, C. H.; Fu, M. S.; Zhang, H.; Yang, D. R. Kinetically controlled synthesis of Pt-Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation. Chem. Commun. 2014, 50, 560–562.

    Article  Google Scholar 

  52. Liu, S.; Tian, N.; Xie, A. Y.; Du, J. H.; Xiao, J.; Liu, L.; Sun, H. Y.; Cheng, Z. Y.; Zhou, Z. Y.; Sun, S. G. Electrochemically seed-mediated synthesis of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance. J. Am. Chem. Soc. 2016, 138, 5753–5756.

    Article  Google Scholar 

  53. Zhang, K.; Bin, D.; Yang, B. B.; Wang, C. Q.; Ren, F. F.; Du, Y. K. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation. Nanoscale 2015, 7, 12445–12451.

    Article  Google Scholar 

  54. Kim, Y.; Noh, Y.; Lim, E. J.; Lee, S.; Choi, S. M.; Kim, W. B. Star-shaped Pd@Pt core–shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. J. Mater. Chem. A 2014, 2, 6976–6986.

    Article  Google Scholar 

  55. Miao, T. T.; Song, Y. H.; Bi, C. X.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Correlation of surface Ag content in AgPd shells of ultrasmall core–shell Au@AgPd nanoparticles with enhanced electrocatalytic performance for ethanol oxidation. J. Phys. Chem. C 2015, 119, 18434–18443.

    Article  Google Scholar 

  56. Ye, Y.; Joo, J.; Lee, S.; Lee, J. A direct one-step synthetic route to Pd-Pt nanostructures with controllable shape, size, and composition for electrocatalytic applications. J. Mater. Chem. A 2014, 2, 19239–19246.

    Article  Google Scholar 

  57. Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/ platinum single-crystalline nanocubes. Angew. Chem., Int. Ed. 2009, 48, 4808–4812.

    Article  Google Scholar 

  58. Wang, L.; Nemoto, Y.; Yamauchi, Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 2011, 133, 9674–9677.

    Article  Google Scholar 

  59. Zhang, G. L.; Yang, Z. Z.; Zhang, W.; Hu, H. W.; Wang, C. Z.; Huang, C. D.; Wang, Y. X. Tailoring the morphology of Pt3Cu1 nanocrystals supported on graphene nanoplates for ethanol oxidation. Nanoscale 2016, 8, 3075–3084.

    Article  Google Scholar 

  60. Kandambeth, S.; Venkatesh, V.; Shinde, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 2015, 6, 6786.

    Article  Google Scholar 

  61. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

    Article  Google Scholar 

  62. Qiu, H. J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. Aligned nanoporous Pt–Cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal. 2015, 5, 3779–3785.

    Article  Google Scholar 

  63. Ren, F. F.; Wang, H. W.; Zhai, C. Y.; Zhu, M. S.; Yue, R. R.; Du, Y. K.; Yang, P.; Xu, J. K.; Lu, W. S. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium. ACS Appl. Mater. Interfaces 2014, 6, 3607–3614.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Chuansheng Ma from the International Center for Dielectric Research, Xi’an Jiaotong University, for their support with HRTEM, Xiaojing Zhang and Liqun Wang from the School of Science, Xi’an Jiaotong University, for their support of TEM and SEM characterizations. This work is supported by National Natural Science Foundation of China (No. 51271135), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Fundamental Research Funds for the Central Universities, and the Natural Science Foundation of Shanxi Province (No. 2015JM5166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengchun Yang.

Electronic supplementary material

12274_2016_1367_MOESM1_ESM.pdf

Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, P., Lian, S., Yang, G. et al. Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction. Nano Res. 10, 1064–1077 (2017). https://doi.org/10.1007/s12274-016-1367-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1367-4

Keywords

Navigation