Skip to main content
Log in

Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, macroscopic graphene-wrapped melamine foams (MF-G) were fabricated by an MF-templated layer-by-layer (LBL) assembly using graphene oxide as building blocks, followed by solution-processed reduction. By concisely duplicating sponge-like, highly ordered three-dimensional architectures from MF, the resulting MF-G with an interconnected graphene-based scaffold and tunable nanostructure was explored as compressible, robust electrodes for efficient energy storage. A thin layer of pseudocapacitive polypyrrole (PPy) was then attached and uniformly coated on MF-G, resulting in a well-defined core–double-shell configuration of the MF-G-PPy ternary composite sponges. The as-assembled devices exhibited enhancement of supercapacitor performance, with a high specific capacitance of 427 F·g−1 under a compressive strain of 75% and an excellent cycling stability with only 18% degradation after 5,000 charge–discharge cycles. Besides, the MF-G-PPy electrode maintained stable capacitance up to 100 compression–release cycles, with a compressive strain of 75%. These encouraging results thus provide a new route towards the low-cost, easily scalable fabrication of lightweight and deformation-tolerant electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiao, X.; Ding, T. P.; Yuan, L. Y.; Shen, Y. Q.; Zhong, Q. Z.; Zhang, X. H.; Cao, Y. Z.; Hu, B.; Zhai, T.; Gong, L. et al. WO3-x/MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2012, 2, 1328–1332.

    Article  Google Scholar 

  2. Lu, X. H.; Yu, M. H.; Zhai, T.; Wang, G. M.; Xie, S. L.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 2013, 13, 2628–2633.

    Article  Google Scholar 

  3. Lu, Q.; Chen, J. G.; Xiao, J. Q. Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem., Int. Ed. 2013, 52, 1882–1889.

    Article  Google Scholar 

  4. Zhang, G. Q.; Lou, X. W. D. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 2013, 25, 976–979.

    Article  Google Scholar 

  5. Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@ MnO2//h-TiO2@ C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267–272.

    Article  Google Scholar 

  6. Chen, P. C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.

    Article  Google Scholar 

  7. Guan, C.; Xia, X. H.; Meng, N.; Zeng, Z. Y.; Cao, X. H.; Soci, C.; Zhang, H.; Fan, H. J. Hollow core–shell nanostructure supercapacitor electrodes: Gap matters. Energy Environ. Sci. 2012, 5, 9085–9090.

    Article  Google Scholar 

  8. Xia, X. H.; Zhu, C. R.; Luo, J. S.; Zeng, Z. Y.; Guan, C.; Ng, C. F.; Zhang, H.; Fan, H. J. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 2014, 10, 766–773.

    Article  Google Scholar 

  9. Zhang, F.; Yuan, C. Z.; Zhu, J. J.; Wang, J.; Zhang, X. G.; Lou, X. W. D. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv. Funct. Mater. 2013, 23, 3909–3915.

    Article  Google Scholar 

  10. Zhu, J. X.; Zhu, T.; Zhou, X. Z.; Zhang, Y. Y.; Lou, X. W.; Chen, X. D.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 2011, 3, 1084–1089.

    Article  Google Scholar 

  11. Liu, J. L.; Zhang, L. L.; Wu, H. B.; Lin, J. Y.; Shen, Z. X.; Lou, X. W. D. High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci. 2014, 7, 3709–3719.

    Article  Google Scholar 

  12. Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.

    Article  Google Scholar 

  13. Wang, G. K.; Sun, X.; Lu, F. Y.; Sun, H. T.; Yu, M. P.; Jiang, W. L.; Liu, C. S.; Lian, J. Flexible pillared graphenepaper electrodes for high-performance electrochemical supercapacitors. Small 2012, 8, 452–459.

    Article  Google Scholar 

  14. Luo, B.; Liu, S.; Zhi, L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 2012, 8, 630–646.

    Article  Google Scholar 

  15. Yin, S. Y.; Niu, Z. Q.; Chen, X. D. Assembly of graphene sheets into 3D macroscopic structures. Small 2012, 8, 2458–2463.

    Article  Google Scholar 

  16. Wang, X. F.; Liu, B.; Liu, R.; Wang, Q. F.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem., Int. Ed. 2014, 126, 1880–1884.

    Article  Google Scholar 

  17. Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.

    Article  Google Scholar 

  18. Luo, B.; Zhi, L. J. Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 2015, 8, 456–477.

    Article  Google Scholar 

  19. Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 2011, 50, 1815–1819.

    Article  Google Scholar 

  20. Ren, J.; Bai, W. Y.; Guan, G. Z.; Zhang, Y.; Peng, H. S. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 2013, 25, 5965–5970.

    Article  Google Scholar 

  21. Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.

    Article  Google Scholar 

  22. He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182.

    Article  Google Scholar 

  23. Chen, L.-F.; Huang, Z.-H.; Liang, H.-W.; Yao, W.-T.; Yu, Z.-Y.; Yu, S.-H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331–3338.

    Article  Google Scholar 

  24. Wang, Q.; Yan, J.; Fan, Z. Q. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762.

    Article  Google Scholar 

  25. Dimesso, L.; Spanheimer, C.; Jacke, S.; Jaegermann, W. Synthesis and characterization of three-dimensional carbon foams-LiFePO4 composites. J. Power Sources 2011, 196, 6729–6734.

    Article  Google Scholar 

  26. Kodama, M.; Yamashita, J.; Soneda, Y.; Hatori, H.; Kamegawa, K. Preparation and electrochemical characteristics of N-enriched carbon foam. Carbon 2007, 45, 1105–1107.

    Article  Google Scholar 

  27. Chen, S. L.; Liu, Q.; He, G. H.; Zhou, Y.; Hanif, M.; Peng, X. W.; Wang, S. Q.; Hou, H. Q. Reticulated carbon foam derived from a sponge-like natural product as a highperformance anode in microbial fuel cells. J. Mater. Chem. 2012, 22, 18609–18613.

    Article  Google Scholar 

  28. Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591–595.

    Article  Google Scholar 

  29. Li, X.; Rong, J. P.; Wei, B. Q. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 2010, 4, 6039–6049.

    Article  Google Scholar 

  30. Li, P. X.; Kong, C. Y.; Shang, Y. Y.; Shi, E. Z.; Yu, Y. T.; Qian, W. Z.; Wei, F.; Wei, J. Q.; Wang, K. L.; Zhu, H. W. et al. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale 2013, 5, 8472–8479.

    Article  Google Scholar 

  31. Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core–shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209–218.

    Article  Google Scholar 

  32. Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168.

    Article  Google Scholar 

  33. Chen, S. L.; He, G. H.; Hu, H.; Jin, S. Q.; Zhou, Y.; He, Y. Y.; He, S. J.; Zhao, F.; Hou, H. Q. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy Environ. Sci. 2013, 6, 2435–2439.

    Article  Google Scholar 

  34. He, S. J.; Chen, W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J. Power Sources 2014, 262, 391–400.

    Article  Google Scholar 

  35. Zhu, G. X.; Xi, C. Y.; Liu, Y. J.; Zhu, J.; Shen, X. P. CN foam loaded with few-layer graphene nanosheets for highperformance supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 7591–7599.

    Article  Google Scholar 

  36. Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723–3728.

    Article  Google Scholar 

  37. Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

    Article  Google Scholar 

  38. Basiricò, L.; Lanzara, G. Moving towards high-power, high-frequency and low-resistance cnt supercapacitors by tuning the cnt length, axial deformation and contact resistance. Nanotechnology 2012, 23, 305401.

    Article  Google Scholar 

  39. Li, P. X.; Yang, Y. B.; Shi, E. Z.; Shen, Q. C.; Shang, Y. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Core–double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl. Mater. Interfaces 2014, 6, 5228–5234.

    Article  Google Scholar 

  40. Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem., Int. Ed. 2012, 51, 5101–5105.

    Article  Google Scholar 

  41. Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.

    Article  Google Scholar 

  42. Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphenebased materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902.

    Article  Google Scholar 

  43. Tao, Y.; Xie, X. Y.; Lv, W.; Tang, D.-M.; Kong, D. B.; Huang, Z. H.; Nishihara, H.; Ishii, T.; Li, B. H.; Golberg, D. et al. Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 2013, 3, 2975.

    Google Scholar 

  44. Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T. All-in-one graphene fiber supercapacitor. Nanoscale 2014, 6, 6448–6451.

    Article  Google Scholar 

  45. Lu, X. H.; Zhai, T.; Zhang, X. H.; Shen, Y. Q.; Yuan, L. Y.; Hu, B.; Gong, L.; Chen, J.; Gao, Y. H.; Zhou, J. et al. WO3-x@Au@ MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 2012, 24, 938–944.

    Article  Google Scholar 

  46. Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.

    Article  Google Scholar 

  47. Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 25, 1058–1064.

    Article  Google Scholar 

  48. Wu, X. L.; Yang, D. R.; Wang, C. K.; Jiang, Y. T.; Wei, T.; Fan, Z. J. Functionalized three-dimensional graphene networks for high performance supercapacitors. Carbon 2015, 92, 26–30.

    Article  Google Scholar 

  49. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  Google Scholar 

  50. Li, Z. P.; Wang, J. Q.; Liu, X. H.; Liu, S.; Ou, J. F.; Yang, S. R. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J. Mater. Chem. 2011, 21, 3397–3403.

    Article  Google Scholar 

  51. Sheng, K. X.; Bai, H.; Sun, Y. Q.; Li, C.; Shi, G. Q. Layerby-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices. Polymer 2011, 52, 5567–5572.

    Article  Google Scholar 

  52. Lee, T.; Yun, T.; Park, B.; Sharma, B.; Song, H.-K.; Kim, B.-S. Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: Importance of establishing intimate electronic contact through nanoscale blending. J. Mater. Chem. 2012, 22, 21092–21099.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhang or Tianxi Liu.

Electronic supplementary material

12274_2016_1179_MOESM1_ESM.pdf

Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, K., Huang, Z. et al. Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. Nano Res. 9, 2938–2949 (2016). https://doi.org/10.1007/s12274-016-1179-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1179-6

Keywords

Navigation