Skip to main content
Log in

Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hydrothermal carbonization (HTC) of biomass to produce one-dimensional carbon materials with hierarchical pores is of significant importance. Here, we fabricate composites of MnOx-encapsulated multiporous carbon nanofibers (M-MCNFs) from naturally available carbohydrates through a dopamine-assisted HTC/ templating process. The introduction of dopamine aids in the formation of the morphology of carbon nanofibers (CNFs) by enhancing the interactions between the hard-templates and carbohydrates. The chosen cryptomelane hard-templates, which are superior to traditional hard-templates, are converted into Mn3O4 nanoparticles embedded in multiporous CNFs (MCNFs), eliminating the need for tedious post deposition procedures to introduce redox active sites. Hence, the obtained hybrids with large surface areas, hierarchical pores, and unique structures show great potential in supercapacitors. This economic and sustainable strategy paves a new way for synthesizing MCNFs and metal oxide-encapsulated MCNFs composites from biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  Google Scholar 

  2. Liang, H.-W.; Wang, L.; Chen, P.-Y.; Lin, H.-T.; Chen, L.-F.; He, D.; Yu, S.-H. Carbonaceous nanofiber membranes for selective filtration and separation of nanoparticles. Adv. Mater. 2010, 22, 4691–4695.

    Article  Google Scholar 

  3. Liang, H.-W.; Cao, X.; Zhang, W.-J.; Lin, H.-T.; Zhou, F.; Chen, L.-F.; Yu, S.-H. Robust and highly efficient freestanding carbonaceous nanofiber membranes for water purification. Adv. Funct. Mater. 2011, 21, 3851–3858.

    Article  Google Scholar 

  4. Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P. M. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 1994, 116, 7935–7936.

    Article  Google Scholar 

  5. Cavaliere, S.; Subianto, S.; Savych, I.; Jones, D. J.; Rozière, J. Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 2011, 4, 4761–4785.

    Article  Google Scholar 

  6. Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

    Article  Google Scholar 

  7. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.

    Article  Google Scholar 

  8. Jiang, Y.; Wu, Y.; Zhang, S. Y.; Xu, C. Y.; Yu, W. C.; Xie, Y.; Qian, Y. T. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc. 2000, 122, 12383–12384.

    Article  Google Scholar 

  9. White, R. J.; Budarin, V.; Luque, R.; Clark, J. H.; Macquarrie, D. J. Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 2009, 38, 3401–3418.

    Article  Google Scholar 

  10. Zhang, P. F.; Yuan, J. Y.; Fellinger, T.-P.; Antonietti, M.; Li, H. R.; Wang, Y. Improving hydrothermal carbonization by using poly(ionic liquid)s. Angew. Chem., Int. Ed. 2013, 52, 6028–6032.

    Article  Google Scholar 

  11. White, R. J.; Antonio, C.; Budarin, V. L.; Bergström, E.; Thomas-Oates, J.; Clark, J. H. Polysaccharide-derived carbons for polar analyte separations. Adv. Funct. Mater. 2010, 20, 1834–1841.

    Article  Google Scholar 

  12. Wang, S. P.; Han, C. L.; Wang, J.; Deng, J.; Zhu, M. L.; Yao, J.; Li, H. R.; Wang, Y. Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation. Chem. Mater. 2014, 26, 6872–6877.

    Article  Google Scholar 

  13. Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987–7991.

    Article  Google Scholar 

  14. Sevilla, M.; Fuertes, A. B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289.

    Article  Google Scholar 

  15. Hu, B.; Wang, K.; Wu, L. H.; Yu, S.-H.; Antonietti, M.; Titirici, M.-M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828.

    Article  Google Scholar 

  16. Liang, H.-W.; Liu, J.-W.; Qian, H.-S.; Yu, S.-H. Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications. Acc. Chem. Res. 2013, 46, 1450–1461.

    Article  Google Scholar 

  17. Liang, H.-W.; Guan, Q.-F.; Chen, L.-F.; Zhu, Z.; Zhang, W.-J.; Yu, S.-H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem., Int. Ed. 2012, 51, 5101–5105.

    Article  Google Scholar 

  18. Ryu, J.; Suh, Y.-W.; Suh, D. J.; Ahn, D. J. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 2010, 48, 1990–1998.

    Article  Google Scholar 

  19. Titirici, M.-M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204–1212.

    Article  Google Scholar 

  20. Wohlgemuth, S.-A.; White, R. J.; Willinger, M.-G.; Titirici, M.-M.; Antonietti, M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem. 2012, 14, 1515–1523.

    Article  Google Scholar 

  21. Wang, D.-W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H.-M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2008, 47, 373–376.

    Article  Google Scholar 

  22. Deng, J.; Xiong, T. Y.; Xu, F.; Li, M. M.; Han, C. L.; Gong, Y. T.; Wang, H. Y.; Wang, Y. Inspired by bread leavening: One-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 2015, 17, 4053–4060.

    Article  Google Scholar 

  23. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  Google Scholar 

  24. Mane, G. P.; Talapaneni, S. N.; Anand, C.; Varghese, S.; Iwai, H.; Ji, Q. M.; Ariga, K.; Mori, T.; Vinu, A. Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid. Adv. Funct. Mater. 2012, 22, 3596–3604.

    Article  Google Scholar 

  25. Lu, A. H.; Kiefer, A.; Schmidt, W.; Schüth, F. Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chem. Mater. 2004, 16, 100–103.

    Article  Google Scholar 

  26. Yuan, J. K.; Liu, X. G.; Akbulut, O.; Hu, J. Q.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332–336.

    Article  Google Scholar 

  27. Wang, B.; Park, J.; Wang, C. Y.; Ahn, H.; Wang, G. X. Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 2010, 55, 6812–6817.

    Article  Google Scholar 

  28. Qu, J. Y.; Gao, F.; Zhou, Q.; Wang, Z. Y.; Hu, H.; Li, B. B.; Wan, W. B.; Wang, X. Z.; Qiu, J. S. Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors. Nanoscale 2013, 5, 2999–3005.

    Article  Google Scholar 

  29. Kimura, H.; Nakahara, M.; Matubayasi, N. In situ kinetic study on hydrothermal transformation of D-glucose into 5-hydroxymethylfurfural through d-fructose with 13C NMR. J. Phys. Chem. A 2011, 115, 14013–14021.

    Article  Google Scholar 

  30. Yu, G. H.; Hu, L. B.; Liu, N.; Wang, H. L.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11, 4438–4442.

    Article  Google Scholar 

  31. Liang, K.; Gu, T. L.; Cao, Z. Y.; Tang, X. Z.; Hu, W. C.; Wei, B. Q. In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy 2014, 9, 245–251.

    Article  Google Scholar 

  32. Li, F.; Zhang, Y. X.; Huang, M.; Xing, Y.; Zhang, L. L. Rational design of porous MnO2 tubular arrays via facile and templated method for high performance supercapacitors. Electrochim. Acta 2015, 154, 329–337.

    Article  Google Scholar 

  33. Zhao, L.; Yu, J.; Li, W. J.; Wang, S. G.; Dai, C. L.; Wu, J. W.; Bai, X. D.; Zhi, C. Y. Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density. Nano Energy 2014, 4, 39–48.

    Article  Google Scholar 

  34. Yang, P. H.; Ding, Y.; Lin, Z. Y.; Chen, Z. W.; Li, Y. Z.; Qiang, P. F.; Ebrahimi, M.; Mai, W. J.; Wong, C. P.; Wang, Z. L. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014, 14, 731–736.

    Article  Google Scholar 

  35. Cheng, Y. W.; Lu, S. T.; Zhang, H. B.; Varanasi, C. V.; Liu, J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 2012, 12, 4206–4211.

    Article  Google Scholar 

  36. Hou, Y.; Cheng, Y. W.; Hobson, T.; Liu, J. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 2010, 10, 2727–2733.

    Article  Google Scholar 

  37. He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182.

    Article  Google Scholar 

  38. Zhi, J.; Deng, S.; Wang, Y. F.; Hu, A. G. Highly ordered metal oxide nanorods inside mesoporous silica supported carbon nanomembranes: High performance electrode materials for symmetrical supercapacitor devices. J. Phys. Chem. C 2015, 119, 8530–8536.

    Article  Google Scholar 

  39. Liu, X. J.; Liu, J. F.; Sun, X. M. NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 2015, 3, 13900–13905.

    Article  Google Scholar 

  40. Wu, M.-S.; Hsu, W.-H. Nickel nanoparticles embedded in partially graphitic porous carbon fabricated by direct carbonization of nickel-organic framework for high-performance supercapacitors. J. Power Sources 2015, 274, 1055–1062.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Deng, J., Chen, Y. et al. Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors. Nano Res. 9, 2672–2680 (2016). https://doi.org/10.1007/s12274-016-1154-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1154-2

Keywords

Navigation