Skip to main content
Log in

Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A facile electron-charging and reducing method was developed to prepare Au/WO3 nanocomposites for plasmonic solar water splitting. The preparation method involved a charging step in which electrons were charged into WO3 under negative bias, and a subsequent reducing step in which the stored electrons were used to reductively deposit Au on the surface of WO3. The electron-charged WO3 (c-WO3) exhibited tunable reducibility that could be easily controlled by varying the charging parameters, and this property makes this method a universal strategy to prepare metal/WO3 composites. The obtained Au/WO3 nanocomposite showed greatly improved photoactivity toward the oxygen evolution reaction (OER) when compared with WO3. After Au decoration, the OER photocurrent was improved by a percentage of over 80% at low potentials (<0.6 V vs. SCE), and by a percentage of over 30% at high potentials (>1.0 V vs. SCE). Oxygen evolution measurements were performed to quantitatively determine the Faraday efficiency for OER, which reflected the amount of photocurrent consumed by water splitting. The Faraday efficiency for OER was improved from 74% at the WO3 photoanode to 94% at the Au-8/WO3 composite photoanode, and this is the first direct evidence that the Au decoration significantly restrained the anodic side reactions and enhanced the photoelectrochemical (PEC) OER efficiency. The high photoactivity of the composite photoanode toward OER was ascribed to the plasmon resonance energy transfer (PRET) enhancement and the catalytic enhancement of Au nanoparticles (NPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133–5146.

    Article  Google Scholar 

  2. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

    Article  Google Scholar 

  3. Ingram, D. B.; Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 2011, 133, 5202–5205.

    Article  Google Scholar 

  4. Kim, H. J.; Lee, S. H.; Upadhye, A. A.; Ro, I.; Tejedor- Tejedor, M. I.; Anderson, M. A.; Kim, W. B.; Huber, G. W. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. ACS Nano 2014, 8, 10756–10765.

    Article  Google Scholar 

  5. Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.

    Article  Google Scholar 

  6. Su, F. L.; Wang, T.; Lv, R.; Zhang, J. J.; Zhang, P.; Lu, J. W.; Gong, J. L. Dendritic Au/TiO2 nanorod arrays for visiblelight driven photoelectrochemical water splitting. Nanoscale 2013, 5, 9001–9009.

    Article  Google Scholar 

  7. Chen, H. M.; Chen, C. K.; Chen, C. J.; Cheng, L. C.; Wu, P. C.; Cheng, B. H.; Ho, Y. Z.; Tseng, M. L.; Hsu, Y. Y.; Chan, T. S. et al. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. ACS Nano 2012, 6, 7362–7372.

    Article  Google Scholar 

  8. Wu, M.; Chen, W. J.; Shen, Y. H.; Huang, F. Z.; Li, C. H.; Li, S. K. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 15052–15060.

    Google Scholar 

  9. Thiyagarajan, P.; Ahn, H. J.; Lee, J. S.; Yoon, J. C.; Jang, J. H. Hierarchical metal/semiconductor nanostructure for efficient water splitting. Small 2013, 9, 2341–2347.

    Article  Google Scholar 

  10. Thomann, I.; Pinaud, B. A.; Chen, Z. B.; Clemens, B. M.; Jaramillo, T. F.; Brongersma, M. L. Plasmon enhanced solarto- fuel energy conversion. Nano Lett. 2011, 11, 3440–3446.

    Article  Google Scholar 

  11. Li, J. T.; Cushing, S. K.; Zheng, P.; Meng, F. K.; Chu, D.; Wu, N. Q. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 2013, 4, 2651.

    Google Scholar 

  12. Thimsen, E.; Le Formal, F.; Grätzel, M.; Warren, S. C. Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 2011, 11, 35–43.

    Article  Google Scholar 

  13. Solarska, R.; Bienkowski, K.; Zoladek, S.; Majcher, A.; Stefaniuk, T.; Kulesza, P. J.; Augustynski, J. Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold–polyoxometalate particles. Angew. Chem., Int. Ed. 2014, 53, 14196–14200.

    Article  Google Scholar 

  14. Solarska, R.; Królikowska, A.; Augustynski, J. Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angew. Chem., Int. Ed. 2010, 49, 7980–7983.

    Article  Google Scholar 

  15. Liu, L. P.; Wang, G. M.; Li, Y.; Li, Y. D.; Zhang, J. Z. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res. 2011, 4, 249–258.

    Article  Google Scholar 

  16. Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.

    Article  Google Scholar 

  17. Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 2011, 111, 3858–3887.

    Article  Google Scholar 

  18. Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

    Article  Google Scholar 

  19. Zhang, P.; Wang, T.; Gong, J. L. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328–5342.

    Article  Google Scholar 

  20. Pala, R. A.; White, J.; Barnard, E.; Liu, J.; Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 2009, 21, 3504–3509.

    Article  Google Scholar 

  21. Catchpole, K. R.; Polman, A. Plasmonic solar cells. Opt. Express 2008, 16, 21793–21800.

    Article  Google Scholar 

  22. Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with active optical antennas. Science 2011, 332, 702–704.

    Article  Google Scholar 

  23. Furube, A.; Du, L. C.; Hara, K.; Katoh, R.; Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 14852–14853.

    Article  Google Scholar 

  24. Kowalska, E.; Abe, R.; Ohtani, B. Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: Action spectrum analysis. Chem. Commun. 2009, 241–243.

    Google Scholar 

  25. Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 2010, 12, 2344–2355.

    Article  Google Scholar 

  26. Primo, A.; Marino, T.; Corma, A.; Molinari, R.; García, H. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. J. Am. Chem. Soc. 2011, 133, 6930–6933.

    Article  Google Scholar 

  27. Liu, Z. W.; Hou, W. B.; Pavaskar, P.; Aykol, M.; Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 2011, 11, 1111–1116.

    Article  Google Scholar 

  28. Tian, Y.; Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632–7637.

    Article  Google Scholar 

  29. Liu, Y. H.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Lu, S. N.; Sun, Y. H.; Zhang, Y. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 2015, 8, 2891–2900.

    Article  Google Scholar 

  30. Hodes, G.; Cahen, D.; Manassen, J. Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature 1976, 260, 312–313.

    Article  Google Scholar 

  31. Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

    Article  Google Scholar 

  32. Pala, R. A.; Leenheer, A. J.; Lichterman, M.; Atwater, H. A.; Lewis, N. S. Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes. Energy Environ. Sci. 2014, 7, 3424–3430.

    Google Scholar 

  33. Coridan, R. H.; Arpin, K. A.; Brunschwig, B. S.; Braun, P. V.; Lewis, N. S. Photoelectrochemical behavior of hierarchically structured Si/WO3 core–shell tandem photoanodes. Nano Lett. 2014, 14, 2310–2317.

    Article  Google Scholar 

  34. Wang, H. L.; Lindgren, T.; He, J. J.; Hagfeldt, A.; Lindquist, S.-E. Photolelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: Mechanism of electron transport. J. Phys. Chem. B 2000, 104, 5686–5696.

    Article  Google Scholar 

  35. Butler, M. A. Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys. 1977, 48, 1914–1920.

    Article  Google Scholar 

  36. Berak, J. M.; Sienko, M. J. Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J. Solid State Chem. 1970, 2, 109–133.

    Article  Google Scholar 

  37. Wang, G. M.; Ling, Y. C.; Wang, H. Y.; Yang, X. Y.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 2012, 5, 6180–6187.

    Article  Google Scholar 

  38. Qin, D.-D.; Tao, C.-L.; Friesen, S. A.; Wang, T.-H.; Varghese, O. K.; Bao, N.-Z.; Yang, Z.-Y.; Mallouk, T. E.; Grimes, C. A. Dense layers of vertically oriented WO3 crystals as anodes for photoelectrochemical water oxidation. Chem. Commun. 2012, 48, 729–731.

    Article  Google Scholar 

  39. Seabold, J. A.; Choi, K.-S. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 2011, 23, 1105–1112.

    Article  Google Scholar 

  40. Mi, Q. X.; Zhanaidarova, A.; Brunschwig, B. S.; Gray, H. B.; Lewis, N. S. A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy Environ. Sci. 2012, 5, 5694–5700.

    Article  Google Scholar 

  41. Solarska, R.; Jurczakowski, R.; Augustynski, J. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Nanoscale 2012, 4, 1553–1556.

    Article  Google Scholar 

  42. Hill, J. C.; Choi, K.-S. Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation. J. Phys. Chem. C 2012, 116, 7612–7620.

    Article  Google Scholar 

  43. Jin, T.; Diao, P.; Wu, Q. Y.; Xu, D.; Hu, D. Y.; Xie, Y. H.; Zhang, M. WO3 nanoneedles/a-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting. Appl. Catal. B: Environ. 2014, 148–149, 304–310.

    Article  Google Scholar 

  44. Jin, T.; Diao, P.; Xu, D.; Wu, Q. Y. High-aspect-ratio WO3 nanoneedles modified with nickel-borate for efficient photoelectrochemical water oxidation. Electrochim. Acta 2013, 114, 271–277.

    Article  Google Scholar 

  45. Yan, J. Q.; Wang, T.; Wu, G. J.; Dai, W. L.; Guan, N. J.; Li, L. D.; Gong, J. L. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 2015, 27, 1580–1586.

    Article  Google Scholar 

  46. Zhang, J. J.; Zhang, P.; Wang, T.; Gong, J. L. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting. Nano Energy 2015, 11, 189–195.

    Article  Google Scholar 

  47. Yang, X. G.; Liu, R.; He, Y. M.; Thorne, J.; Zheng, Z.; Wang, D. W. Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Res. 2015, 8, 56–81.

    Article  Google Scholar 

  48. Wang, J. M.; Khoo, E.; Lee, P. S.; Ma, J. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte. J. Phys. Chem. C 2009, 113, 9655–9658.

    Article  Google Scholar 

  49. Niklasson, G. A.; Granqvist, C. G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127–156.

    Article  Google Scholar 

  50. Chemelewski, W. D.; Lee, H.-C.; Lin, J.-F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 2014, 136, 2843–2850.

    Article  Google Scholar 

  51. Xi, G. C.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J. Am. Chem. Soc. 2012, 134, 6508–6511.

    Article  Google Scholar 

  52. Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability. Chem. Mater. 2001, 13, 2838–2842.

    Article  Google Scholar 

  53. Ngaotrakanwiwat, P.; Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A. Charge–discharge behavior of TiO2-WO3 photocatalysis systems with energy storage ability. Phys. Chem. Chem. Phys. 2003, 5, 3234–3237.

    Article  Google Scholar 

  54. Tatsuma, T.; Takeda, S.; Saitoh, S.; Ohko, Y.; Fujishima, A. Bactericidal effect of an energy storage TiO2-WO3 photocatalyst in dark. Electrochem. Commun. 2003, 5, 793–796.

    Article  Google Scholar 

  55. Iwai, T. Temperature dependence of the optical absorption edge of tungsten trioxide single crystal. J. Phys. Soc. Jpn. 1960, 15, 1596–1600.

    Article  Google Scholar 

  56. Jovic, V.; Chen, W. T.; Sun-Waterhouse, D.; Blackford, M. G.; Idriss, H.; Waterhouse, G. I. N. Effect of gold loading and TiO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol-water mixtures. J. Catal. 2013, 305, 307–317.

    Article  Google Scholar 

  57. Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203–208.

    Article  Google Scholar 

  58. Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 2011, 4, 1781–1787.

    Article  Google Scholar 

  59. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  Google Scholar 

  60. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  61. Kay, A.; Cesar, I.; Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, 15714–15721.

    Article  Google Scholar 

  62. Köntje, C.; Kolb, D. M.; Jerkiewicz, G. Roughening and long-range nanopatterning of Au(111) through potential cycling in aqueous acidic media. Langmuir 2013, 29, 10272–10278.

    Article  Google Scholar 

  63. Zhang, D. F.; Diao, P. Activity and stability of supported gold nano- and submicro-particles toward the electrocatalytic oxidation of carbon monoxide. Appl. Catal. A 2014, 469, 65–73.

    Article  Google Scholar 

  64. Wu, Q. Y.; Diao, P.; Sun, J.; Xu, D.; Jin, T.; Xiang, M. Draining the photoinduced electrons away from an anode: The preparation of Ag/Ag3PO4 composite nanoplate photoanodes for highly efficient water splitting. J. Mater. Chem. A 2015, 3, 18991–18999.

    Article  Google Scholar 

  65. Yeo, B. S.; Klaus, S. L.; Ross, P. N.; Mathies, R. A.; Bell, A. T. Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold. ChemPhysChem 2010, 11, 1854–1857.

    Google Scholar 

  66. Diaz-Morales, O.; Calle-Vallejo, F.; de Munck, C.; Koper, M. T. M. Electrochemical water splitting by gold: Evidence for an oxide decomposition mechanism. Chem. Sci. 2013, 4, 2334–2343.

    Article  Google Scholar 

  67. Ye, M. D.; Gong, J. J.; Lai, Y. K.; Lin, C. J.; Lin, Z. Q. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 2012, 134, 15720–15723.

    Article  Google Scholar 

  68. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, Inc.: New York, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Diao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Diao, P., Xu, D. et al. Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting. Nano Res. 9, 1735–1751 (2016). https://doi.org/10.1007/s12274-016-1067-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1067-0

Keywords

Navigation