Skip to main content
Log in

Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The past decade has witnessed a rapid surge of interest in the research and development of non-precious metal-based electrocatalysts for the oxygen reduction reaction (ORR). Until now, the best catalysts in acidic electrolytes have exclusively been Fe-N-C-type materials from high-temperature pyrolysis. Despite the ORR activities of metal phthalocyanine or porphyrin macrocycles having long been known, their durability remains poor. In this work, we use these macrocycles as a basis to develop a novel organic-carbon hybrid material from in-situ polymerization of iron phthalocyanine on conductive multiwalled carbon nanotube scaffolds using a low-temperature microwave heating method. At an optimal polymerto- carbon ratio, the hybrid electrocatalyst exhibits excellent ORR activity with a positive half-wave potential (0.80 V), large mass activity (up to 18.0 A/g at 0.80 V), and a low peroxide yield (<3%). In addition, strong electronic coupling between the polymer and carbon nanotubes is believed to suppress demetallization of the macrocycles, significantly improving cycling stability in acids. Our study represents a rare example of non-precious metal-based electrocatalysts prepared without high-temperature pyrolysis, while having ORR activity in acidic media with potential for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gewirth, A. A.; Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: Materials and challenges. Inorg. Chem. 2010, 49, 3557–3566.

    Article  Google Scholar 

  2. Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526–8544.

    Article  Google Scholar 

  3. Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

    Google Scholar 

  4. Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

    Article  Google Scholar 

  5. Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotubegraphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.

    Article  Google Scholar 

  6. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H.-J.; Baek, J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

    Article  Google Scholar 

  7. Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

    Article  Google Scholar 

  8. Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213.

    Article  Google Scholar 

  9. Zagal, J.; Páez, M.; Tanaka, A. A.; Dos Santos Junior, J. R., Jr.; Linkous, C. A. Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J. Electroanal. Chem. 1992, 339, 13–30.

    Article  Google Scholar 

  10. Feng, Y. J.; Alonso-Vante, N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys. Status Solidi B 2008, 245, 1792–1806.

    Article  Google Scholar 

  11. Zagal, J. H.; Griveau, S.; Silva, J. F.; Nyokong, T.; Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 2010, 254, 2755–2791.

    Article  Google Scholar 

  12. Elzing, A.; Van der Putten, A.; Visscher, W.; Barendrecht, E. The cathodic reduction of oxygen at cobalt phthalocyanine: Influence of electrode preparation on electrocatalysis. J. Electroanal. Chem. Interf. Electrochem. 1986, 200, 313–322.

    Article  Google Scholar 

  13. Van der Putten, A.; Elzing, A.; Visscher, W.; Barendrecht, E. Oxygen reduction on vacuum-deposited and adsorbed transition-metal phthalocyanine films. J. Electroanal. Chem. Interf. Electrochem. 1986, 214, 523–533.

    Article  Google Scholar 

  14. Tanaka, A. A.; Fierro, C.; Scherson, D.; Yaeger, E. B. Electrocatalytic aspects of iron phthalocyanine and its µ-oxo derivatives dispersed on high surface area carbon. J. Phys. Chem. 1987, 91, 3799–3807.

    Article  Google Scholar 

  15. Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

    Google Scholar 

  16. Jiang, Y. Y.; Lu, Y. Z.; Lv, X. Y.; Han, D. X.; Zhang, Q. X.; Niu, L.; Chen, W. Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal. 2013, 3, 1263–1271.

    Article  Google Scholar 

  17. Baranton, S.; Coutanceau, C.; Roux, C.; Hahn, F.; Léger, J. M. Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: Tolerance to methanol, stability and kinetics. J. Electroanal. Chem. 2005, 577, 223–234.

    Article  Google Scholar 

  18. Li, W. M.; Yu, A. P.; Higgins, D. C.; Llanos, B. G.; Chen, Z. W. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 2010, 132, 17056–17058.

    Article  Google Scholar 

  19. Van der Putten, A.; Elzing, A.; Visscher, W.; Barendrecht, E. Oxygen reduction on pyrolyzed carbon-supported transition metal chelates. J. Electroanal. Chem. Interf. Electrochem. 1986, 205, 233–244.

    Article  Google Scholar 

  20. Bezerra, C. W. B.; Zhang, L.; Liu, H. S.; Lee, K. C.; Marques, A. L. B.; Marques, E. P.; Wang, H. J.; Zhang, J. J. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J. Power Sources 2007, 173, 891–908.

    Article  Google Scholar 

  21. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  22. Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 10102–10120.

    Article  Google Scholar 

  23. Zhou, Y.; Wang, B.; Liu, C. H.; Han, N.; Xu, X. N.; Zhao, F. P.; Fan, J.; Li, Y. G. Polyanthraquinone-based nanostructured electrode material capable of high-performance pseudocapacitive energy storage in aprotic electrolyte. Nano Energy 2015, 15, 654–661.

    Article  Google Scholar 

  24. Hijazi, I.; Bourgeteau, T.; Cornut, R.; Morozan, A.; Filoramo, A.; Leroy, J.; Derycke, V.; Jousselme, B.; Campidelli, S. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 6348–6354.

    Article  Google Scholar 

  25. Tomoda, H.; Saito, S.; Ogawa, S.; Shiraishi, S. Synthesis of phthalocyanines from phthalonitrile with organic strong bases. Chem. Lett. 1980, 9, 1277–1280.

    Article  Google Scholar 

  26. Melendres, C. A.; Cafasso, F. A. Electrochemical and in situ laser Raman spectroscopy studies on carbon-supported iron phthalocyanine electrodes. J. Electrochem. Soc. 1981, 128, 755–760.

    Article  Google Scholar 

  27. Szybowicz, M.; Makowiecki, J. Orientation study of iron phthalocyanine (FePc) thin films deposited on silicon substrate investigated by atomic force microscopy and micro-Raman spectroscopy. J. Mater. Sci. 2012, 47, 1522–1530.

    Article  Google Scholar 

  28. Liu, Z. Q.; Zhang, X. X.; Zhang, Y. X.; Jiang, J. Z. Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines. Spectrochim. Acta 2007, 67, 1232–1246.

    Article  Google Scholar 

  29. Cataldo, F. Synthesis and study of electronic spectra of planar polymeric phthalocyanines. Dyes Pigm. 1997, 34, 75–85.

    Article  Google Scholar 

  30. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  31. Zhou, J. G.; Duchesne, P. N.; Hu, Y. F.; Wang, J.; Zhang, P.; Li, Y. G.; Regier, T.; Dai, H. J. Fe-N bonding in a carbon nanotube-graphene complex for oxygen reduction: An XAS study. Phys. Chem. Chem. Phys. 2014, 16, 15787–15791.

    Article  Google Scholar 

  32. Cook, P. L.; Liu, X. S.; Yang, W. L.; Himpsel, F. J. X-ray absorption spectroscopy of biomimetic dye molecules for solar cells. J. Chem. Phys. 2009, 131, 194701.

    Google Scholar 

  33. Morozan, A.; Campidelli, S.; Filoramo, A.; Jousselme, B.; Palacin, S. Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 2011, 49, 4839–4847.

    Article  Google Scholar 

  34. Li, H. J.; Xu, Z. W.; Li, K. Z.; Hou, X. H.; Cao, G. X.; Zhang, Q. L.; Cao, Z. Y. Modification of multi-walled carbon nanotubes with cobalt phthalocyanine: Effects of the templates on the assemblies. J. Mater. Chem. 2011, 21, 1181–1186.

    Article  Google Scholar 

  35. Mamuru, S. A.; Ozoemena, K. I.; Fukuda, T.; Kobayashi, N.; Nyokong, T. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim. Acta 2010, 55, 6367–6375.

    Article  Google Scholar 

  36. Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321–6328.

    Article  Google Scholar 

  37. Wang, Q.; Zhou, Z.-Y.; Lai, Y.-J.; You, Y.; Liu, J.-G.; Wu, X.-L.; Terefe, E.; Chen, C.; Song, L.; Rauf, M. et al. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 2014, 136, 10882–10885.

    Article  Google Scholar 

  38. Wang, Y.-C.; Lai, Y.-J.; Song, L.; Zhou, Z.-Y.; Liu, J.-G.; Wang, Q.; Yang, X.-D.; Chen, C.; Shi, W.; Zheng, Y.-P. et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem., Int. Ed. 2015, 54, 9907–9910.

    Google Scholar 

  39. Bonakdarpour, A.; Dahn, T. R.; Atanasoski, R. T.; Debe, M. K.; Dahn, J. R. H2O2 release during oxygen reduction reaction on Pt nanoparticles. Electrochem. Solid-State Lett. 2008, 11, B208–B211.

    Article  Google Scholar 

  40. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

    Article  Google Scholar 

  41. Baranton, S.; Coutanceau, C.; Garnier, E.; Léger, J. M. How does a-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? J. Electroanal. Chem. 2006, 590, 100–110.

    Article  Google Scholar 

  42. Ramírez, G.; Trollund, E.; Isaacs, M.; Armijo, F.; Zagal, J.; Costamagna, J.; Aguirre, M. J. Electroreduction of molecular oxygen on poly-iron-tetraaminophthalocyanine modified electrodes. Electroanalysis 2002, 14, 540–545.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Fan or Yanguang Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, B., Zhong, J. et al. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 9, 1497–1506 (2016). https://doi.org/10.1007/s12274-016-1046-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1046-5

Keywords

Navigation