Skip to main content
Log in

Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol

  • Rsearch Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To achieve better control of the formation of silver sulfide (Ag2S) nanoparticles, ultrasmall Ag nanoclusters protected by thiolate ligands (Ag44(SR)30 and Ag16(GSH)9) are used as precursors, which, via delicate chemistry, can be readily converted to monodisperse Ag2S nanoparticles with controllable sizes (4–16 nm) and switchable solvent affinity (between aqueous and organic solvents). This new synthetic protocol makes use of the atomic monodispersity and rich surface chemistry of Ag nanoclusters and a novel two-phase protocol design, which results in a well-controlled reaction environment for the formation of Ag2S nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, W. P.; Zhang, Z. H.; Low, H. Y.; Chin, W. S. Preparation of Ag2S nanocrystals of predictable shape and size. Angew. Chem., Int. Ed. 2004, 43, 5685–5689.

    Article  Google Scholar 

  2. Lou, W. J.; Wang, X. B.; Chen, M.; Liu, W. M.; Hao, J. C. A simple route to synthesize size-controlled Ag2S core–shell nanocrystals, and their self-assembly. Nanotechnology 2008, 19, 225607.

  3. Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.

    Article  Google Scholar 

  4. Shen, S. L.; Zhang, Y. J.; Peng, L.; Du, Y. P.; Wang, Q. B. Matchstick-shaped Ag2S–ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew. Chem., Int. Ed. 2011, 50, 7115–7118.

    Article  Google Scholar 

  5. Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second nearinfrared window. ACS Nano 2012, 6, 3695–3702.

    Article  Google Scholar 

  6. Yang, J.; Ying, J. Y. Nanocomposites of Ag2S and noble metals. Angew. Chem., Int. Ed. 2011, 50, 4637–4643.

    Article  Google Scholar 

  7. Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016–4022.

    Article  Google Scholar 

  8. Yang, J.; Ying, J. Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat. Mater. 2009, 8, 683–689.

    Article  Google Scholar 

  9. Zhu, G. X.; Xu, Z. Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. J. Am. Chem. Soc. 2011, 133, 148–157.

    Article  Google Scholar 

  10. Brelle, M. C.; Zhang, J. Z.; Nguyen, L.; Mehra, R. K. Synthesis and ultrafast study of cysteine- and glutathionecapped Ag2S semiconductor colloidal nanoparticles. J. Phys. Chem. A 1999, 103, 10194–10201.

    Article  Google Scholar 

  11. Yang, L.; Xing, R. M.; Shen, Q. M.; Jiang, K.; Ye, F.; Wang, J. Y.; Ren, Q. S. Fabrication of protein-conjugated silver sulfide nanorods in the bovine serum albumin solution. J. Phys. Chem. B 2006, 110, 10534–10539.

    Article  Google Scholar 

  12. Mo, X.; Krebs, M. P.; Yu, S. M. Directed synthesis and assembly of nanoparticles using purple membrane. Small 2006, 2, 526–529.

    Article  Google Scholar 

  13. Jin, R. C. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343–362.

    Article  Google Scholar 

  14. Lu, Y. Z.; Chen, W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594–3623.

    Article  Google Scholar 

  15. Negishi, Y.; Nobusada K.; Tsukuda, T. Glutathioneprotected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

    Article  Google Scholar 

  16. Zheng, J.; Nicovich P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409–431.

    Article  Google Scholar 

  17. Chen, S. W.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez M. M.; Whetten, R. L. Gold nanoelectrodes of varied size: Transition to molecule-like charging. Science 1998, 280, 2098–2101.

    Article  Google Scholar 

  18. Luo, Z. T.; Zheng, K. Y.; Xie, J. P. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 2014, 50, 5143–5155.

    Article  Google Scholar 

  19. Yuan, X.; Setyawati, M. I.; Tan, A. S.; Ong, C. N.; Leong, D. T.; Xie, J. P. Highly luminescent silver nanoclusters with tunable emissions: Cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Mater. 2013, 5, e39.

    Article  Google Scholar 

  20. Yamazoe, S.; Koyasu K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816–824.

    Article  Google Scholar 

  21. Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X.; Noll, B. C. Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. J. Am. Chem. Soc. 2015, 137, 4610–4613.

    Article  Google Scholar 

  22. Yuan, X.; Luo, Z. T.; Yu, Y.; Yao, Q. F.; Xie, J. P. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem.—Asian J. 2013, 8, 858–871.

    Article  Google Scholar 

  23. Choi, S.; Park, S.; Yu, J. H. Ligand-assisted etching: The stability of silver nanoparticles and the generation of luminescent silver nanodots. Chem. Commun. 2014, 50, 15098–15100.

    Article  Google Scholar 

  24. Jin, R. C.; Qian, H. F.; Wu, Z. K.; Zhu, Y.; Zhu, M. Z.; Mohanty, A.; Garg, N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903–2910.

    Article  Google Scholar 

  25. Yu, Y.; Yao, Q. F.; Luo, Z. T.; Yuan, X.; Lee, J. Y.; Xie, J. P. Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale 2013, 5, 4606–4620.

    Article  Google Scholar 

  26. Wang, S. X.; Song, Y. B.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X. M.; Chen, M.; Li, P.; Zhu, M. Z. Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. J. Am. Chem. Soc. 2015, 137, 4018–4021.

    Article  Google Scholar 

  27. Luo, Z. T.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D.-E.; Xie, J. P. Toward understanding the growth mechanism: Tracing all stable intermediate species from reduction of Au(I)–thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 2014, 136, 10577–10580.

    Article  Google Scholar 

  28. Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Recent progress in the functionalization methods of thiolateprotected gold clusters. J. Phys. Chem. Lett. 2014, 5, 4134–4142.

    Article  Google Scholar 

  29. Wang, Y.; Su, H. F.; Xu, C. F.; Li, G.; Gell, L.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Zheng, N. F. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands. J. Am. Chem. Soc. 2015, 137, 4324–4327.

    Article  Google Scholar 

  30. AbdulHalim, L. G.; Kothalawala, N.; Sinatra, L.; Dass, A.; Bakr, O. M. Neat and complete: Thiolate-ligand exchange on a silver molecular nanoparticle. J. Am. Chem. Soc. 2014, 136, 15865–15868.

    Article  Google Scholar 

  31. Yao, C. H.; Chen, J. S.; Li, M.-B.; Liu, L. R.; Yang, J. L.; Wu, Z. K. Adding two active silver atoms on Au25 nanoparticle. Nano Lett. 2015, 15, 1281–1287.

    Article  Google Scholar 

  32. Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem., Int. Ed. 2014, 53, 4623–4627.

    Article  Google Scholar 

  33. Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

    Article  Google Scholar 

  34. Yao, Q. F.; Yu, Y.; Yuan, X.; Zhao, D.; Xie, J. P.; Lee, J. Y. Counterion-assisted shaping of nanocluster supracrystals. Angew. Chem., Int. Ed. 2015, 54, 184–189.

    Article  Google Scholar 

  35. Yao, Q. F.; Yuan, X.; Yu, Y.; Xie, J. P.; Lee, J. Y. Introducing amphiphilicity to noble metal nanoclusters via phase-transfer driven ion-pairing reaction. J. Am. Chem. Soc. 2015, 137, 2128–2132.

    Article  Google Scholar 

  36. Bakr, O. M.; Amendola, V.; Aikens, C. M.; Wenseleers, W.; Li, R.; Dal Negro, L.; Schatz, G. C.; Stellacci, F. Silver nanoparticles with broad multiband linear optical absorption. Angew. Chem., Int. Ed. 2009, 48, 5921–5926.

    Article  Google Scholar 

  37. Yang, H. Y.; Zhao, Y. W.; Zhang, Z. Y.; Xiong, H. M.; Yu, S. N. One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology 2013, 24, 055706.

  38. Martínez-Castañón, G. A.; Sánchez-Loredo, M. G.; Dorantes, H. J.; Martínez-Mendoza, J. R.; Ortega-Zarzosa, G.; Ruiz, F. Characterization of silver sulfide nanoparticles synthesized by a simple precipitation method. Mater. Lett. 2005, 59, 529–534.

    Article  Google Scholar 

  39. Ma, D. K.; Hu, X. K.; Zhou, H. Y.; Zhang, J. H.; Qian, Y. T. Shape-controlled synthesis and formation mechanism of nanoparticles-assembled Ag2S nanorods and nanotubes. J. Cryst. Growth 2007, 304, 163–168.

    Article  Google Scholar 

  40. Zhao, Y. B.; Zhang, D. W.; Shi, W. F.; Wang, F. A gammaray irradiation reduction route to prepare rod-like Ag2S nanocrystallines at room temperature. Mater. Lett. 2007, 61, 3232–3234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Xie or Jun Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Yao, Q., Li, J. et al. Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol. Nano Res. 9, 942–950 (2016). https://doi.org/10.1007/s12274-015-0980-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0980-y

Keywords

Navigation