Skip to main content
Log in

A facile “ship-in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rattle structure is a topic of great interest in design and application of nanomaterials due to the unique core@void@shell architecture and the integration of functions. Herein, we developed a novel “ship-in-a-bottle” method to fabricate upconverting (UC) luminescent nanorattles by incorporating lanthanide-doped fluorides into hollow mesoporous silica. The size of nanorattles and the filling amount of fluorides can be well controlled. In addition, the modification of silica shell (with phenylene and amine groups) and the variation of efficient UC fluorides (NaYF4:Yb,Er, NaLuF4:Yb,Er, NaGdF4:Yb,Er and LiYF4:Yb,Er) were readily achieved. The resulting nanorattles exhibited a high capacity and pH-dependent release of the anti-cancer drug doxorubicin (DOX). Furthermore, we employed these nanorattles in proof-of-concept UC-monitoring drug release by utilizing the energy transfer process from UC fluorides to DOX, thus revealing the great potential of the nanorattles as efficient cancer theranostic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010, 135, 1839–1854.

    Article  Google Scholar 

  2. Luo, W. Q.; Liu, Y. S.; Chen, X. Y. Lanthanide-doped semiconductor nanocrystals: Electronic structures and optical properties. Sci. China Mater. 2015, 58, 819–850.

    Article  Google Scholar 

  3. Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416–1448.

    Article  Google Scholar 

  4. Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343–2389.

    Article  Google Scholar 

  5. Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drugconjugated upconverison nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920–18929.

    Article  Google Scholar 

  6. Liu, J. N.; Bu, W. B.; Shi, J. L. Silica coated upconversion nanoparticles: A versatile platform for the development of efficient theranostics. Acc. Chem. Res. 2015, 48, 1797–1805.

    Article  Google Scholar 

  7. Zhao, L. Z.; Peng, J. J.; Huang, Q.; Li, C. Y.; Chen, M.; Sun, Y.; Lin, Q. N.; Zhu, L. Y.; Li, F. Y. Near-infrared photoregulated drug release in living tumor tissue via yolk–shell upconversion nanocages. Adv. Funct. Mater. 2014, 24, 363–371.

    Article  Google Scholar 

  8. Liu, J. A.; Bu, W. B.; Pan, L. M.; Shi, J. L. Nir-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem., Int. Ed. 2013, 52, 4375–4379.

    Article  Google Scholar 

  9. Yang, Y. M.; Velmurugan, B.; Liu, X. G.; Xing, B. G. Nir photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small 2013, 9, 2937–2944.

    Article  Google Scholar 

  10. Li, X. M.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages. J. Am. Chem. Soc. 2015, 137, 5903–5906.

    Article  Google Scholar 

  11. Chen, H. Y.; Qi, B.; Moore, T.; Wang, F. L.; Colvin, D. C.; Sanjeewa, L. D.; Gore, J. C.; Hwu, S. J.; Mefford, O. T.; Alexis, F. et al. Multifunctional yolk-in-shell nanoparticles for pH-triggered drug release and imaging. Small 2014, 10, 3364–3370.

    Article  Google Scholar 

  12. Fan, W. P.; Shen, B.; Bu, W. B.; Chen, F.; He, Q. J.; Zhao, K. L.; Zhang, S. J.; Zhou, L. P.; Peng, W. J.; Xiao, Q. F. et al. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous mr/ucl imaging. Biomaterials 2014, 35, 8992–9002.

    Article  Google Scholar 

  13. Lu, S.; Tu, D. T.; Hu, P.; Xu, J.; Li, R. F.; Wang, M.; Chen, Z.; Huang, M. D.; Chen, X. Y. Multifunctional nano-bioprobes based on rattle-structured upconverting luminescent nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 7915–7919.

    Article  Google Scholar 

  14. Qian, H. S.; Guo, H. C.; Ho, P. C. L.; Mahendran, R.; Zhang, Y. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 2009, 5, 2285–2290.

    Article  Google Scholar 

  15. Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580–1585.

    Article  Google Scholar 

  16. Hou, Z. Y.; Li, X. J.; Li, C. X.; Dai, Y. L.; Ma, P. A.; Zhang, X.; Kang, X. J.; Cheng, Z. Y.; Lin, J. Electrospun upconversion composite fibers as dual drugs delivery system with individual release properties. Langmuir 2013, 29, 9473–9482.

    Article  Google Scholar 

  17. Chen, Y. Y.; Liu, S.; Hou, Z. Y.; Ma, P. A.; Yang, D. M.; Li, C. X.; Lin, J. Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo. Nano Res. 2015, 8, 1917–1931.

    Article  Google Scholar 

  18. Li, K.; Su, Q. Q.; Yuan, W.; Tian, B.; Shen, B.; Li, Y. H.; Feng, W.; Li, F. Y. Ratiometric monitoring of intracellular drug release by an upconversion drug delivery nanosystem. ACS Appl. Mater. Interfaces 2015, 7, 12278–12286.

    Article  Google Scholar 

  19. Liu, J. N.; Bu, J. W.; Bu, W. B.; Zhang, S. J.; Pan, L. M.; Fan, W. P.; Chen, F.; Zhou, L. P.; Peng, W. J.; Zhao, K. L. et al. Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew. Chem., Int. Ed. 2014, 53, 4551–4555.

    Article  Google Scholar 

  20. Kang, X. J.; Cheng, Z. Y.; Yang, D. M.; Ma, P. A.; Shang, M. M.; Peng, C.; Dai, Y. L.; Lin, J. Design and synthesis of multifunctional drug carriers based on luminescent rattletype mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch. Adv. Funct. Mater. 2012, 22, 1470–1481.

    Article  Google Scholar 

  21. Xiao, M. D.; Zhao, C. M.; Chen, H. J.; Yang, B. C.; Wang, J. F. “Ship-in-a-bottle” growth of noble metal nanostructures. Adv. Funct. Mater. 2012, 22, 4526–4532.

    Article  Google Scholar 

  22. Priebe, M.; Fromm, K. M. Nanorattles or yolk–shell nanoparticles—What are they, how are they made, and what are they good for? Chem.—Eur. J. 2015, 21, 3854–3874.

    Article  Google Scholar 

  23. Purbia, R.; Paria, S. Yolk/shell nanoparticles: Classifications, synthesis, properties, and applications. Nanoscale 2015, 7, 19789–19873.

    Article  Google Scholar 

  24. Boyer, J. C.; van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+, yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417–1419.

    Article  Google Scholar 

  25. Roberts, J. E. Lanthanum and neodymium salts of trifluoroacetic acid. J. Am. Chem. Soc. 1961, 83, 1087–1088.

    Article  Google Scholar 

  26. Fang, X. L.; Chen, C.; Liu, Z. H.; Liu, P. X.; Zheng, N. F. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 2011, 3, 1632–1639.

    Article  Google Scholar 

  27. Jiao, Y. F.; Guo, J.; Shen, S.; Chang, B. S.; Zhang, Y. H.; Jiang, X. G.; Yang, W. L. Synthesis of discrete and dispersible hollow mesoporous silica nanoparticles with tailored shell thickness for controlled drug release. J. Mater. Chem. 2012, 22, 17636–17643.

    Article  Google Scholar 

  28. Xia, X. H.; Yang, M. X.; Wang, Y. C.; Zheng, Y. Q.; Li, Q. G.; Chen, J. Y.; Xia, Y. N. Quantifying the coverage density of poly(ethylene glycol) chains on the surface of gold nanostructures. ACS Nano 2012, 6, 512–522.

    Article  Google Scholar 

  29. Li, Y. S.; Shi, J. L. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Adv. Mater. 2014, 26, 3176–3205.

    Article  Google Scholar 

  30. Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 2010, 4, 529–539.

    Article  Google Scholar 

  31. Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surfaceprotected etching process. Nano Res. 2009, 2, 583–591.

    Article  Google Scholar 

  32. Wu, H. Y.; Chen, C. T.; Hung, I. M.; Liao, C. H.; Vetrivel, S.; Kao, H. M. Direct synthesis of cubic benzene-bridged mesoporous organosilica functionalized with mercaptopropyl groups as an effective adsorbent for mercury and silver ions. J. Phys. Chem. C 2010, 114, 7021–7029.

    Article  Google Scholar 

  33. Wu, H. Y.; Shieh, F. K.; Kao, H. M.; Chen, Y. W.; Deka, J. R.; Liao, S. H.; Wu, K. C. W. Synthesis, bifunctionalization, and remarkable adsorption performance of benzene-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acids. Chem.—Eur. J. 2013, 19, 6358–6367.

    Article  Google Scholar 

  34. Zhang, Q.; Liu, F.; Nguyen, K. T.; Ma, X.; Wang, X. J.; Xing, B. G.; Zhao, Y. L. Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv. Funct. Mater. 2012, 22, 5144–5156.

    Article  Google Scholar 

  35. Wang, C.; Cheng, L.; Liu, Y. M.; Wang, X. J.; Ma, X. X.; Deng, Z. Y.; Li, Y. G.; Liu, Z. Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv. Funct. Mater. 2013, 23, 3077–3086.

    Article  Google Scholar 

  36. Huang, S.; Peng, S.; Li, Y. B.; Cui, J. B.; Chen, H. L.; Wang, L. Y. Development of NIR-II fluorescence imageguided and pH-responsive nanocapsules for cocktail drug delivery. Nano Res. 2015, 8, 1932–1943.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyuan Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Tu, D., Li, X. et al. A facile “ship-in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Res. 9, 187–197 (2016). https://doi.org/10.1007/s12274-015-0979-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0979-4

Keywords

Navigation