Skip to main content
Log in

Ultra-stable silica-coated chiral Au-nanorod assemblies: Core–shell nanostructures with enhanced chiroptical properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chiral nano-assemblies with amplified optical activity have attracted particular interest for their potential application in photonics, sensing and catalysis. Yet it still remains a great challenge to realize their real applications because of the instability of these assembled nanostructures. Herein, we demonstrate a facile and efficient method to fabricate ultra-stable chiral nanostructures with strong chiroptical properties. In these novel chiral nanostructures, side-by-side assembly of chiral cysteine-modified gold nanorods serves as the core while mesoporous silica acts as the shell. The chiral core–shell nanostructures exhibit an evident plasmonic circular dichroism (CD) response originating from the chiral core. Impressively, such plasmonic CD signals can be easily manipulated by changing the number as well as the aspect ratio of Au nanorods in the assemblies located at the core. In addition, because of the stabilization effect of silica shells, the chiroptical performance of these core–shell nanostructures is significantly improved in different chemical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pendry, J. B. A chiral route to negative refraction. Science 2004, 306, 1353–1355.

    Article  Google Scholar 

  2. Gubler, U.; Bosshard, C. Optical materials: A new twist for nonlinear optics. Nat. Mater. 2002, 1, 209–210.

    Article  Google Scholar 

  3. Guerrero-Martínez, A.; Alonso-Gómez, J. L.; Auguié, B.; Cid, M. M.; Liz-Marzán, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 2011, 6, 381–400.

    Article  Google Scholar 

  4. Wang, Y.; Xu, J.; Wang, Y. W.; Chen, H. Y. Emerging chirality in nanoscience. Chem. Soc. Rev. 2013, 42, 2930–2962.

    Article  Google Scholar 

  5. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

    Article  Google Scholar 

  6. Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solutionbased synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

    Article  Google Scholar 

  7. Yuan, Q.; Wang, X. Aqueous-based route toward noble metal nanocrystals: Morphology-controlled synthesis and their applications. Nanoscale 2010, 2, 2328–2335.

    Article  Google Scholar 

  8. Huang, Z. F.; Bai, F. Wafer-scale, three-dimensional helical porous thin films deposited at a glancing angle. Nanoscale 2014, 6, 9401–9409.

    Article  Google Scholar 

  9. Shemer, G.; Krichevski, O.; Markovich, G.; Molotsky, T.; Lubitz, I.; Kotlyar, A. B. Chirality of silver nanoparticles synthesized on DNA. J. Am. Chem. Soc. 2006, 128, 11006–11007.

    Article  Google Scholar 

  10. Slocik, J. M.; Govorov, A. O.; Naik, R. R. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett. 2011, 11, 701–705.

    Article  Google Scholar 

  11. Ben-Moshe, A.; Maoz, B. M.; Govorov, A. O.; Markovich, G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 2013, 42, 7028–7041.

    Article  Google Scholar 

  12. Govorov, A. O. Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries. J. Phys. Chem. C 2011, 115, 7914–7923.

    Google Scholar 

  13. Govorov, A. O.; Fan, Z. Y.; Hernandez, P.; Slocik, J. M.; Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 2010, 10, 1374–1382.

    Article  Google Scholar 

  14. Zhu, Z. N.; Liu, W. J.; Li, Z. T.; Han, B.; Zhou, Y. L.; Gao, Y.; Tang, Z. Y. Manipulation of collective optical activity in one-dimensional plasmonic assembly. ACS Nano 2012, 6, 2326–2332.

    Article  Google Scholar 

  15. Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.

    Article  Google Scholar 

  16. Kuzyk, A.; Schreiber, R.; Zhang, H.; Govorov, A. O.; Liedl, T.; Liu, N. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 2014, 13, 862–866.

    Article  Google Scholar 

  17. Hou, S.; Wen, T.; Zhang, H.; Liu, W. Q.; Hu, X. N.; Wang, R. Y.; Hu, Z. J.; Wu, X. C. Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. Nano Res. 2014, 7, 1699–1705.

    Article  Google Scholar 

  18. Lan, X.; Lu, X. X.; Shen, C. Q.; Ke, Y. G.; Ni, W. H.; Wang, Q. B. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 2015, 137, 457–462.

    Article  Google Scholar 

  19. Querejeta-Fernández, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 2014, 136, 4788–4793.

    Article  Google Scholar 

  20. Guerrero-Martínez, A.; Auguié, B.; Alonso-Gómez, J. L.; Džolic, Z.; Gómez-Graña, S.; Žinić, M.; Cid, M. M.; Liz-Marzán, L. M. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem., Int. Ed. 2011, 50, 5499–5503.

    Article  Google Scholar 

  21. Shen, X. B.; Zhan, P. F.; Kuzyk, A.; Liu, Q.; Asenjo-Garcia, A.; Zhang, H.; Javier García de Abajo, F.; Govorov, A.; Ding, B. Q.; Liu, N. 3D plasmonic chiral colloids. Nanoscale 2014, 6, 2077–2081.

    Article  Google Scholar 

  22. Zhang, H.; Govorov, A. O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Phys. Rev. B 2013, 87, 075410.

    Article  Google Scholar 

  23. Li, Z. T.; Zhu, Z. N.; Liu, W. J.; Zhou, Y. L.; Han, B.; Gao, Y.; Tang, Z. Y. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322–3325.

    Article  Google Scholar 

  24. Han, B.; Zhu, Z. N.; Li, Z. T.; Zhang, W.; Tang, Z. Y. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies. J. Am. Chem. Soc. 2014, 136, 16104–16107.

    Article  Google Scholar 

  25. Ma, W.; Kuang, H.; Xu, L. G.; Ding, L.; Xu, C. L.; Wang, L. B.; Kotov, N. A. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689.

    Google Scholar 

  26. Graf, P.; Mantion, A.; Haase, A.; Thünemann, A. F.; Mašic, A.; Meier, W.; Luch, A.; Taubert, A. Silicification of peptidecoated silver nanoparticles: A biomimetic soft chemistry approach toward chiral hybrid core–shell materials. ACS Nano 2011, 5, 820–833.

    Article  Google Scholar 

  27. Raula, M.; Maity, D.; Rashid, M. H.; Mandal, T. K. In situ formation of chiral core–shell nanostructures with raspberrylike gold cores and dense organic shells using catechin and their catalytic application. J. Mater. Chem. 2012, 22, 18335–18344.

    Article  Google Scholar 

  28. Liu, W. J.; Zhu, Z. N.; Deng, K.; Li, Z. T.; Zhou, Y. L.; Qiu, H. B.; Gao, Y.; Che, S.; Tang, Z. Y. Gold nanorod@chiral mesoporous silica core–shell nanoparticles with unique optical properties. J. Am. Chem. Soc. 2013, 135, 9659–9664.

    Article  Google Scholar 

  29. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  Google Scholar 

  30. Guo, X. H.; Deng, Y. H.; Gu, D.; Che, R. C.; Zhao, D. Y. Synthesis and microwave absorption of uniform hematite nanoparticles and their core–shell mesoporous silica nanocomposites. J. Mater. Chem. 2009, 19, 6706–6712.

    Article  Google Scholar 

  31. Jain, P. K.; Eustis, S.; El-Sayed, M. A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 2006, 110, 18243–18253.

    Article  Google Scholar 

  32. Auguié, B.; Alonso-Gómez, J. L.; Guerrero-Martínez, A.; Liz-Marzán, L. M. Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods. J. Phys. Chem. Lett. 2011, 2, 846–851.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Shi, L., Gao, X. et al. Ultra-stable silica-coated chiral Au-nanorod assemblies: Core–shell nanostructures with enhanced chiroptical properties. Nano Res. 9, 451–457 (2016). https://doi.org/10.1007/s12274-015-0926-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0926-4

Keywords

Navigation