Skip to main content
Log in

Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Black phosphorus (BP) is a good candidate for studying strain effects on twodimensional (2D) materials beyond graphene and transition-metal dichalcogenides. This is because of its particular ability to sustain high strain and remarkably anisotropic mechanical properties resulting from its unique puckered structure. We here investigate the dependence of lattice vibrational frequencies on crystallographic orientations in uniaxially strained few-layer BP by in-situ strained Raman spectroscopy. The out-of-plane A1 g mode is sensitive to uniaxial strain along the near-armchair direction whereas the in-plane B2g and A2 g modes are sensitive to strain in the near-zigzag direction. For uniaxial strains applied away from these directions, all three phonon modes are linearly redshifted. Our experimental observation is explained by the anisotropic influence of uniaxial tensile strain on structural properties of BP using density functional theory. This study demonstrates the possibility of selective tuning of in-plane and out-of-plane phonon modes in BP by uniaxial strain and makes strain engineering a promising avenue for extensively modulating the optical and mechanical properties of 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  2. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  3. Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.

    Article  Google Scholar 

  4. Peimyoo, N.; Shang, J. Z.; Cong, C. X.; Shen, X. N.; Wu, X. Y.; Yeow, E. K. L.; Yu, T. Nonblinking, intense twodimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985–10994.

    Article  Google Scholar 

  5. Cooper, R. C.; Lee, C.; Marianetti, C. A.; Wei, X. D.; Hone, J.; Kysar, J. W. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 2013, 87, 035423.

    Article  Google Scholar 

  6. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

    Article  Google Scholar 

  7. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  Google Scholar 

  8. Liang, X. G.; Fu, Z. L.; Chou, S. Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 2007, 7, 3840–3844.

    Article  Google Scholar 

  9. Ovchinnikov, D.; Allain, A.; Huang, Y.-S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.

    Article  Google Scholar 

  10. Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing highperformance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.

    Article  Google Scholar 

  11. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

    Article  Google Scholar 

  12. Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.

    Article  Google Scholar 

  13. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Google Scholar 

  14. Qiao, J. S.; Kong, X. H.; Hu, Z.-X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Google Scholar 

  15. Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366–2369.

    Article  Google Scholar 

  16. Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S.; Moreira, R. L.; Rodin, A. S.; Zapata, J. D.; de Souza, E. A. T.; Castro Neto, A. H. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 2015, 9, 4270–4276.

    Article  Google Scholar 

  17. Qin, G. Z.; Yan, Q. B.; Qin, Z. Z.; Yue, S. Y.; Hu, M.; Su, G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 2015, 17, 4854–4858.

    Article  Google Scholar 

  18. Jain, A.; McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.

    Article  Google Scholar 

  19. Fei, R. X.; Yang, L. Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 2014, 105, 083120.

    Article  Google Scholar 

  20. Hu, T.; Han, Y.; Dong, J. M. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology 2014, 25, 455703.

    Article  Google Scholar 

  21. Jiang, J. W.; Park, H. S. Negative poisson’s ratio in singlelayer black phosphorus. Nat. Commun. 2014, 5, 4727.

    Google Scholar 

  22. Wei, Q.; Peng, X. H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 2014, 104, 251915.

    Article  Google Scholar 

  23. Yu, T.; Ni, Z. H.; Du, C. L.; You, Y. M.; Wang, Y. Y.; Shen, Z. X. Raman mapping investigation of graphene on transparent flexible substrate: The strain effect. J. Phys. Chem. C 2008, 112, 12602–12605.

    Article  Google Scholar 

  24. Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.

    Article  Google Scholar 

  25. Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

    Article  Google Scholar 

  26. Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 7304–7308.

    Article  Google Scholar 

  27. Pereira, V. M.; Castro Neto, A. H.; Peres, N. M. R. Tightbinding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.

    Article  Google Scholar 

  28. Kou, L. Z.; Tang, C.; Guo, W. L.; Chen, C. F. Tunable magnetism in strained graphene with topological line defect. ACS Nano 2011, 5, 1012–1017.

    Article  Google Scholar 

  29. Wang, Y. L.; Cong, C. X.; Qiu, C. Y.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857–2861.

    Article  Google Scholar 

  30. Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.

    Article  Google Scholar 

  31. Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of straininduced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307.

    Article  Google Scholar 

  32. He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.

    Article  Google Scholar 

  33. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  Google Scholar 

  34. Zhang, Q. Y.; Cheng, Y. C.; Gan, L.-Y.; Schwingenschlögl, U. Giant valley drifts in uniaxially strained monolayer MoS2. Phys. Rev. B 2013, 88, 245447.

    Article  Google Scholar 

  35. Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301.

    Article  Google Scholar 

  36. Johari, P.; Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 2012, 6, 5449–5456.

    Article  Google Scholar 

  37. Peng, X. H.; Wei, Q.; Copple, A. Strain-engineered direct–indirect band gap transition and its mechanism in twodimensional phosphorene. Phys. Rev. B 2014, 90, 085402.

    Article  Google Scholar 

  38. Fei, R. X.; Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 2014, 14, 2884–2889.

    Article  Google Scholar 

  39. Li, Y.; Yang, S. X.; Li, J. B. Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field. J. Phys. Chem. C 2014, 118, 23970–23976.

    Article  Google Scholar 

  40. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  Google Scholar 

  41. Qin, G. Z.; Yan, Q. B.; Qin, Z. Z.; Yue, S. Y.; Cui, H. J.; Zheng, Q. R.; Su, G. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 2014, 4, 6946.

    Article  Google Scholar 

  42. Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080–4088.

    Article  Google Scholar 

  43. Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753–755.

    Article  Google Scholar 

  44. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  45. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

  46. Li, S.-L.; Miyazaki, H.; Song, H. S.; Kuramochi, H.; Nakaharai, S.; Tsukagoshi, K. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 2012, 6, 7381–7388.

    Article  Google Scholar 

  47. Late, D. J.; Liu, B.; Matte, H. S. S. R.; Rao, C. N. R.; Dravid, V. P. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv. Funct. Mater. 2012, 22, 1894–1905.

    Article  Google Scholar 

  48. Cong, C. X.; Yu, T.; Saito, R.; Dresselhaus, G. F.; Dresselhaus, M. S. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm-1. ACS Nano 2011, 5, 1600–1605.

    Article  Google Scholar 

  49. Cong, C. X.; Yu, T.; Sato, K.; Shang, J. Z.; Saito, R.; Dresselhaus, G. F.; Dresselhaus, M. S. Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 2011, 5, 8760–8768.

    Article  Google Scholar 

  50. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  Google Scholar 

  51. Ni, Z. H.; Liu, L.; Wang, Y. Y.; Zheng, Z.; Li, L.-J.; Yu, T.; Shen, Z. X. G-band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding. Phys. Rev. B 2009, 80, 125404.

    Article  Google Scholar 

  52. Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.

    Article  Google Scholar 

  53. Cong, C. X.; Yu, T.; Wang, H. M. Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 2010, 4, 3175–3180.

    Article  Google Scholar 

  54. You, Y. M.; Ni, Z. H.; Yu, T.; Shen, Z. X. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 163112.

    Article  Google Scholar 

  55. Wang, Y. Y.; Ni, Z. H.; Liu, L.; Liu, Y. H.; Cong, C. X.; Yu, T.; Wang, X. J.; Shen, D. Z.; Shen, Z. X. Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 2010, 4, 4074–4080.

    Article  Google Scholar 

  56. Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210–1221.

    Article  Google Scholar 

  57. Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.

    Article  Google Scholar 

  58. Late, D. J.; Shirodkar, S. N.; Waghmare, U. V.; Dravid, V. P.; Rao, C. N. R. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2. Chemphyschem 2014, 15, 1592–1598.

    Article  Google Scholar 

  59. Late, D. J.; Maitra, U.; Panchakarla, L. S.; Waghmare, U. V.; Rao, C. N. R. Temperature effects on the Raman spectra of graphenes: Dependence on the number of layers and doping. J. Phys.: Condens. Mat. 2011, 23, 055303.

    Google Scholar 

  60. Nagaleekar, T. M.; Late, D. J. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 2014, 6, 1158–1163.

    Article  Google Scholar 

  61. Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y.-W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

    Article  Google Scholar 

  62. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

    Article  Google Scholar 

  63. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  64. Lu, W. L.; Nan, H. Y.; Hong, J. H.; Chen, Y. M.; Zhu, C.; Liang, Z.; Ma, X. Y.; Ni, Z. H.; Jin, C. H.; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 2014, 7, 853–859.

    Article  Google Scholar 

  65. Late, D. J. Temperature dependent phonon shifts in fewlayer black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 5857–5862.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yang or Ting Yu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cong, C., Fei, R. et al. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 8, 3944–3953 (2015). https://doi.org/10.1007/s12274-015-0895-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0895-7

Keywords

Navigation