Skip to main content
Log in

Coherent Mn3O4-carbon nanocomposites with enhanced energy-storage capacitance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanostructured Mn3O4 was introduced to activated C (AC) by a novel sonochemical reaction, and the resulting nanocomposites were examined as supercapacitor electrodes. The sonication not only catalyzed the redox reaction but also promoted the diffusion of the precursors, causing the formation of coherent nanocomposites with Mn3O4 nanoparticles grown and uniformly distributed inside the mesopores of the AC. In addition, the extreme local condition in the sonochemical synthesis yielded an excessive amount of divalent manganese ions and oxygen vacancies. This novel microstructure endowed the sample with a superior performance, including a specific capacitance of 150 F/g compared with the value of 93 F/g for AC at a charge/discharge rate of 100 mA/g. A Li-ion capacitor delivered an energy density of 68 Wh/kg, compared with 41 Wh/kg for the AC capacitor at a power density of 210 W/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

    Google Scholar 

  2. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

    Article  Google Scholar 

  3. Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.

    Article  Google Scholar 

  4. Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 1238–1251.

    Article  Google Scholar 

  5. Yuan, L. Y.; Yao, B.; Hu, B.; Huo, K. F.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 2013, 6, 470–476.

    Article  Google Scholar 

  6. Candelaria, S. L.; Garcia, B. B.; Liu, D. W.; Cao, G. Z. Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 2012, 22, 9884–9889.

    Article  Google Scholar 

  7. Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

    Article  Google Scholar 

  8. Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250.

    Article  Google Scholar 

  9. Zhou, Y.; Candelaria, S. L.; Liu, Q.; Huang, Y. X.; Uchaker, E.; Cao, G. Z. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. J. Mater. Chem. A 2014, 2, 8472–8482.

    Article  Google Scholar 

  10. Hulicova-Jurcakova, D.; Puziy, A. M.; Poddubnaya, O. I.; Suarez-Garcia, F.; Tascon, J. M. D.; Lu, G. Q. Highly stable performance of supercapacitors from phosphorus–enriched carbons. J. Am. Chem. Soc. 2009, 131, 5026–5027.

    Article  Google Scholar 

  11. Garcia, B. B.; Candelaria, S. L.; Cao, G. Z. Nitrogenated porous carbon electrodes for supercapacitors. J Mater. Sci. 2012, 47, 5996–6004.

    Article  Google Scholar 

  12. Huang, Y. X.; Candelaria, S. L.; Li, Y. W.; Li, Z. M.; Tian, J. J.; Zhang, L. L.; Cao, G. Z. Sulfurized activated carbon for high energy density supercapacitors. J. Power Sources 2014, 252, 90–97.

    Article  Google Scholar 

  13. Milczarek, G.; Ciszewski, A.; Stepniak, I. Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor. J. Power Sources 2011, 196, 7882–7885.

    Article  Google Scholar 

  14. Wang, D. W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater. 2008, 20, 7195–7200.

    Article  Google Scholar 

  15. Zhang, L. L.; Candelaria, S. L.; Tian, J. J.; Li, Y.; Huang, Y.-X.; Cao, G. Z. Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density. J. Power Sources 2013, 236, 215–223.

    Article  Google Scholar 

  16. Kim, M.; Hwang, Y.; Min, K.; Kim, J. Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors. Electrochim. Acta 2013, 113, 322–331.

    Article  Google Scholar 

  17. Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 2013, 5, 72–88.

    Article  Google Scholar 

  18. Kim, M.; Hwang, Y.; Min, K.; Kim, J. Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors. Electrochim. Acta 2013, 113, 322–331.

    Article  Google Scholar 

  19. Zhang, J. R.; Jiang, D. C.; Chen, B.; Zhu, J. J.; Jiang, L. P.; Fang, H. Q. Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor. J. Electrochem. Soc 2001, 148, A1362–A1367.

    Article  Google Scholar 

  20. Wang, Y.; He, P.; Zhao, X.; Lei, W.; Dong, F. Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors. J. Solid State Electr. 2014, 18, 665–672.

    Article  Google Scholar 

  21. Xu, H.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.

    Article  Google Scholar 

  22. Kawaoka, H.; Hibino, M.; Zhou, H.; Honma, I. Sonochemical synthesis of amorphous manganese oxide coated on carbon and application to high power battery. J. Power Sources 2004, 125, 85–89.

    Article  Google Scholar 

  23. Lee, K. G.; Jeong, J.-M.; Lee, S. J.; Yeom, B.; Lee, M.-K.; Choi, B. G. Sonochemical-assisted synthesis of 3D graphene/ nanoparticle foams and their application in supercapacitor. Ultrason. Sonochem. 2015, 22, 422–428.

    Article  Google Scholar 

  24. Xu, H. X.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.

    Article  Google Scholar 

  25. Brock, S. L.; Duan, N.; Tian, Z. R.; Giraldo, O.; Zhou, H.; Suib, S. L. A Review of porous manganese oxide materials. Chem. Mater. 1998, 10, 2619–2628.

    Article  Google Scholar 

  26. Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H.-J. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 2004, 50, 247–254.

    Article  Google Scholar 

  27. Leng, K.; Zhang, F.; Zhang, L.; Zhang, T. F.; Wu, Y. P.; Lu, Y. H.; Huang, Y.; Chen, Y. S. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 2013, 6, 581–592.

    Article  Google Scholar 

  28. Smith, J. W. H.; McDonald, M.; Romero, J. V.; MacDonald, L.; Lee, J. R.; Dahn, J. R. Small and wide angle X-ray studies of impregnated activated carbons. Carbon 2014, 75, 420–431.

    Article  Google Scholar 

  29. Lee, S.-W.; Bak, S.-M.; Lee, C.-W.; Jaye, C.; Fischer, D. A.; Kim, B.-K.; Yang, X.-Q.; Nam, K.-W.; Kim, K.-B. Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J. Phys. Chem. C 2014, 118, 2834–2843.

    Article  Google Scholar 

  30. Jia, X.; Yan, C.; Chen, Z.; Wang, R.; Zhang, Q.; Guo, L.; Wei, F.; Lu, Y. Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chem. Commun. 2011, 47, 9669–9671.

    Article  Google Scholar 

  31. Peng, Y. T.; Chen, Z.; Wen, J.; Xiao, Q. F.; Weng, D.; He, S. Y.; Geng, H.; Lu, Y. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res. 2011, 4, 216–225.

    Article  Google Scholar 

  32. Dong, R.; Ye, Q.; Kuang, L.; Lu, X.; Zhang, Y.; Zhang, X.; Tan, G.; Wen, Y.; Wang, F. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transitionmetal ions. ACS Appl. Mater. Inter. 2013, 5, 9508–9516.

    Article  Google Scholar 

  33. Lee, J. W.; Hall, A. S.; Kim, J.–D.; Mallouk, T. E. A Facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158–1164.

    Article  Google Scholar 

  34. Li, Z. P.; Mi, Y. Q.; Liu, X. H.; Liu, S.; Yang, S. R.; Wang, J. Q. Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J. Mater. Chem. 2011, 21, 14706–14711.

    Article  Google Scholar 

  35. Yan, J.; Fan, Z. J.; Wei, T.; Cheng, J.; Shao, B.; Wang, K.; Song, L. P.; Zhang, M. L. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J. Power Sources 2009, 194, 1202–1207.

    Article  Google Scholar 

  36. Wang, J.-G.; Yang, Y.; Huang, Z.-H.; Kang, F. Y. A highperformance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 2013, 61, 190–199.

    Article  Google Scholar 

  37. Shchukin, D. G.; Radziuk, D.; Möhwald, H. Ultrasonic fabrication of metallic nanomaterials and nanoalloys. Annu. Rev. Mater. Res. 2010, 40, 345–362.

    Article  Google Scholar 

  38. Didenko, Y. T.; McNamara, W. B.; Suslick, K. S. Hot spot conditions during cavitation in water. J. Am. Chem. Soc. 1999, 121, 5817–5818.

    Article  Google Scholar 

  39. Flint, E. B.; Suslick, K. S. The temperature of cavitation. Science 1991, 253, 1397–1399.

    Article  Google Scholar 

  40. Ohl, C. D.; Kurz, T.; Geisler, R.; Lindau, O.; Lauterborn, W. Bubble dynamics, shock waves and sonoluminescence. Philos. Trans. R Soc. Lond. Ser. A–Math. Phys. Eng. Sci. 1999, 357, 269–294.

    Article  Google Scholar 

  41. Vinodgopal, K.; Neppolian, B.; Lightcap, I. V.; Grieser, F.; Ashokkumar, M.; Kamat, P. V. Sonolytic design of graphene-Au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(III). J. Phys. Chem. Lett. 2010, 1, 1987–1993.

    Article  Google Scholar 

  42. Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Manganese oxidebased materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

    Article  Google Scholar 

  43. Yan, D.; Yan, P. X.; Cheng, S.; Chen, J. T.; Zhuo, R. F.; Feng, J. J.; Zhang, G. A. Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method. Cryst. Growth. Des. 2009, 9, 218–222.

    Article  Google Scholar 

  44. Caruso, R. A.; Ashokkumar, M.; Grieser, F. Sonochemical formation of gold sols. Langmuir 2002, 18, 7831–7836.

    Article  Google Scholar 

  45. Zhang, J. L.; Du, J. M.; Han, B. X.; Liu, Z. M.; Jiang, T.; Zhang, Z. F. Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. 2006, 118, 1134–1137.

    Article  Google Scholar 

  46. Jiang, L.-P.; Xu, S.; Zhu, J.-M.; Zhang, J.–R.; Zhu, J.-J.; Chen, H.-Y. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg. Chem. 2004, 43, 5877–5883.

    Article  Google Scholar 

  47. Jin, X.; Zhou, W.; Zhang, S.; Chen, G. Z. Nanoscale microelectrochemical cells on carbon nanotubes. Small 2007, 3, 1513–1517.

    Article  Google Scholar 

  48. Qiao, H.; Li, J.; Fu, J. P.; Kumar, D.; Wei, Q. F.; Cai, Y. B.; Huang, F. L. Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage Properties. ACS Appl. Mater. Inter. 2011, 3, 3704–3708.

    Article  Google Scholar 

  49. Wu, M.; Snook, G. A.; Chen, G. Z.; Fray, D. J. Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem. Commun. 2004, 6, 499–504.

    Article  Google Scholar 

  50. Chang, J.; Jin, M. H.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H. Y.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S. S. et al. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 2013, 23, 5074–5083.

    Article  Google Scholar 

  51. Garcia, B. B.; Candelaria, S. L.; Liu, D.; Sepheri, S.; Cruz, J. A.; Cao, G. High performance high-purity sol-gel derived carbon supercapacitors from renewable sources. Renewable Energy 2011, 36, 1788–1794.

    Article  Google Scholar 

  52. Brousse, T.; Marchand, R.; Taberna, P. L.; Simon, P. TiO2 (B)/activated carbon non–aqueous hybrid system for energy storage. J. Power Sources 2006, 158, 571–577.

    Article  Google Scholar 

  53. Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

    Article  Google Scholar 

  54. Hahn, B. P.; Long, J. W.; Mansour, A. N.; Pettigrew, K. A.; Osofsky, M. S.; Rolison, D. R. Electrochemical Li-ion storage in defect spinel iron oxides: The critical role of cation vacancies. Energy Environ. Sci. 2011, 4, 1495-1502.

    Article  Google Scholar 

  55. Liu, D. W.; Liu, Y. Y.; Garcia, B. B.; Zhang, Q. F.; Pan, A. Q.; Jeong, Y.-H.; Cao, G. Z. V2O5 xerogel electrodes with much enhanced lithium-ion intercalation properties with N2 annealing. J. Mater. Chem. 2009, 19, 8789–8795.

    Article  Google Scholar 

  56. Ruiz, V.; Blanco, C.; Santamaría, R.; Ramos-Fernández, J. M.; Martínez-Escandell, M.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. An activated carbon monolith as an electrode material for supercapacitors. Carbon 2009, 47, 195–200.

    Article  Google Scholar 

  57. Xing, W.; Huang, C. C.; Zhuo, S. P.; Yuan, X.; Wang, G. Q.; Hulicova–Jurcakova, D.; Yan, Z. F.; Lu, G. Q. Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 2009, 47, 1715–1722.

    Article  Google Scholar 

  58. Du Pasquier, A.; Plitz, I.; Menocal, S.; Amatucci, G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 2003, 115, 171–178.

    Article  Google Scholar 

  59. Gao, F.; Qu, J.; Zhao, Z.; Zhou, Q.; Li, B.; Qiu, J. A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon 2014, 80, 640–650.

    Article  Google Scholar 

  60. Nagamuthu, S.; Vijayakumar, S.; Muralidharan, G. Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy & Fuels 2013, 27, 3508–3515.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhong Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Song, H., Zhang, C. et al. Coherent Mn3O4-carbon nanocomposites with enhanced energy-storage capacitance. Nano Res. 8, 3372–3383 (2015). https://doi.org/10.1007/s12274-015-0837-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0837-4

Keywords

Navigation