Skip to main content
Log in

Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous Pt-Fe bimetallic nanocrystals have been synthesized via self-assembly and can effectively facilitate the synthesis of 2-propanol from acetone. The bimetallic catalyst has three-dimensional channels and shows turnover frequencies (TOFs) of up to 972 h−1 for a continuous process more than 50 h. Preliminary mechanistic studies suggest that the high reactivity is related to the interface consisting of a bimetallic Pt-Fe alloy and Fe2O3−x . An understanding of real catalytic behavior and the catalytic mechanism based on model systems has been shown to help fabricate an improved Pt/Fe3O4 catalyst with increased activity and lifetime which has great potential for large-scale industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacNaughton, N. W.; Anderson, L. C. The mechanism of the catalytic reduction of some carbonyl compounds. J. Am. Chem. Soc. 1942, 64, 1456–1459.

    Article  Google Scholar 

  2. Haining, G. J. Olefin hydration process and catalyst. U.S. Patent 5,684,216 A, Nov 04, 1997.

    Google Scholar 

  3. Niwa, S. I.; Eswaramoorthy, M.; Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. A one-step conversion of benzene to phenol with a palladium membrane. Science 2002, 295, 105–107.

    Article  Google Scholar 

  4. van Santen, R. A.; Sheldon, R. A. Catalytic Oxidation: Principles and Applications.; World Scientific: Singapore, 1995.

    Google Scholar 

  5. Gandia, L. M.; Montes, M. Effect of the design variables on the energy performance and size parameters of a heat transformer based on the system acetone/H2/2-propanol. Int. J. Energy Res. 1992, 16, 851–864.

    Article  Google Scholar 

  6. Meng, N.; Shinoda, S.; Saito, Y. Improvements on thermal efficiency of chemical heat pump involving the reaction couple of 2-propanol dehydrogenation and acetone hydrogenation. Int. J. Hydrogen Energy 1997, 22, 361–367.

    Article  Google Scholar 

  7. Pardillos-Guindet, J.; Vidal, S.; Court, J.; Fouilloux, P. Electrode potential of a dispersed Raney nickel electrode during acetone hydrogenation: Influence of the solution and reaction kinetics. J. Catal. 1995, 155, 12–20.

    Article  Google Scholar 

  8. Dresselhaus, M.; Crabtree, G.; Buchanan, M. Basic Research Needs for the Hydrogen Economy: Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use; Office of science, U.S. department of energy: Washington, 2004.

    Book  Google Scholar 

  9. Lemcoff, N. O. Liquid phase catalytic hydrogenation of acetone. J. Catal. 1977, 46, 356–364.

    Article  Google Scholar 

  10. Gandia, L. M.; Diaz, A.; Montes, M. Selectivity in the high-temperature hydrogenation of acetone with silica-supported nickel and cobalt catalysts. J. Catal. 1995, 157, 461–471.

    Article  Google Scholar 

  11. Sen, B.; Vannice, M. A. Metal-support effects on acetone hydrogenation over platinum catalysts. J. Catal. 1988, 113, 52–71.

    Article  Google Scholar 

  12. Fuente, A. M.; Pulgar, G.; González, F.; Pesquera, C.; Blanco, C. Activated carbon supported Pt catalysts: Effect of support texture and metal precursor on activity of acetone hydrogenation. Appl. Catal. A 2001, 208, 35–46.

    Article  Google Scholar 

  13. Noyori, R.; Hashiguchi, S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 1997, 30, 97–102.

    Article  Google Scholar 

  14. Rao, R. S.; Walters, A. B.; Vannice, M. A. Influence of crystallite size on acetone hydrogenation over copper catalysts. J. Phys. Chem. B 2005, 109, 2086–2092.

    Article  Google Scholar 

  15. Özkar, S.; Finke, R. G. Iridium(0) nanocluster, acid-assisted catalysis of neat acetone hydrogenation at room temperature: Exceptional activity, catalyst lifetime, and selectivity at complete conversion. J. Am. Chem. Soc. 2005, 127, 4800–4808.

    Article  Google Scholar 

  16. Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925–1929.

    Article  Google Scholar 

  17. Huang, X. Q.; Li, Y. J.; Chen, Y.; Zhou, E. B.; Xu, Y. X.; Zhou, H. L.; Duan, X. F.; Huang, Y. Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew. Chem. Int. Ed. 2013, 52, 2520–2524.

    Article  Google Scholar 

  18. Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135–144.

    Article  Google Scholar 

  19. Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.

    Article  Google Scholar 

  20. Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751–754.

    Article  Google Scholar 

  21. Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

    Article  Google Scholar 

  22. Wang, H. L.; Krier, J. M.; Zhu, Z. W.; Melaet, G.; Wang, Y. H.; Kennedy, G.; Alayoglu, S.; An, K.; Somorjai, G. A. Promotion of hydrogenation of organic molecules by incorporating iron into platinum nanoparticle catalysts: Displacement of inactive reaction intermediates. ACS Catal. 2013, 3, 2371–2375.

    Article  Google Scholar 

  23. Schmitz, E.; Eichhorn, I.; Patai, S. The Chemistry of the Ether Linkage; Interscience: New York, 1967; pp 341–345.

    Google Scholar 

  24. Narayanan, S.; Unnikrishnan, R. Selective hydrogenation of acetone to methyl isobutyl ketone (MIBK) over co-precipitated Ni/Al2O3 catalysts. Appl. Catal. A 1996, 145, 231–236.

    Article  Google Scholar 

  25. Cunningham, J.; Al-Sayyed, G. H.; Cronin, J. A.; Healy, C.; Hirschwald, W. Surface synergisms between copper and its oxides in catalytic isopropanol/acetone interconversions at 430–523 K. Appl. Catal. 1986, 25, 129–138.

    Article  Google Scholar 

  26. Boffa, A.; Lin, C.; Bell, A. T.; Somorjai, G. A. Promotion of CO and CO2 hydrogenation over Rh by metal oxides: The influence of oxide lewis acidity and reducibility. J. Catal. 1994, 149, 149–158.

    Article  Google Scholar 

  27. Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L. D.; Yan, C. H. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 2010, 132, 4998–4999.

    Article  Google Scholar 

  28. Bowker, M.; James, D.; Stone, P.; Bennett, R.; Perkins, N.; Millard, L.; Greaves, J.; Dickinson, A. Catalysis at the metal-support interface: Exemplified by the photocatalytic reforming of methanol on Pd/TiO2. J. Catal. 2003, 217, 427–433.

    Article  Google Scholar 

  29. Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; pp 619–665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuen Wu or Yadong Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Wu, Y., Zhao, G. et al. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Res. 8, 2706–2713 (2015). https://doi.org/10.1007/s12274-015-0777-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0777-z

Keywords

Navigation