Skip to main content
Log in

Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have designed and synthesized NaGdF4:Nd3+, Yb3+, Tm3+ magnetic nanophosphors with combined dual-mode downconversion (DC) and upconversion (UC) photoluminescence upon 800 nm excitation. Hexagonal-phase NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals (NCs) with an average size of 21 nm were synthesized using a solvothermal approach. Nd3+, Yb3+, Tm3+ triple-doped NaGdF4 NCs exhibit a broad range of photoluminescence peaks covering a near infrared first/second window (860–900, 1,000, and 1,060 nm), and visible emission including blue (475 nm), green (520 and 542 nm) and yellow (587 nm) after excitation at 800 nm. A mechanism involving circulation of energy over Gd3+ sublattices as bridge ions and final trapping by the initial activator ions (Nd3+) has been proposed. Penetration depth studies indicate that NIR emission is easily detected even at a large tissue thickness of 10 mm. These paramagnetic nanophosphors demonstrate a large magnetization value of 1.88 emu/g at 20 kOe and longitudinal relaxivity value of 1.2537 mM−1·S−1 as a T 1-weighted magnetic resonance imaging contrast agent. These NaGdF4:Nd3+, Yb3+, Tm3+ NCs are promising for applications in biological and magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, J.; Liu, Z.; Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

    Article  Google Scholar 

  2. Wei, J.; Qiu, J; Ren, L.; Zhang, K.; Wang, S.; Weeks, B. Size sorted multicolor fluorescence graphene oxide quantum dots obtained by differential velocity centrifugation. Sci. Adv. Mater. 2014, 6, 1052–1059.

    Article  Google Scholar 

  3. Cai, W.; Shin, D.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S. X.; Gambhir, S. S.; Chen, X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006, 6, 669–676.

    Article  Google Scholar 

  4. Chance, B. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. N Y Acad. Sci. 1998, 838, 29–45.

    Article  Google Scholar 

  5. Chen, G.; Ohulchanskyy, T. Y.; Liu, S.; Law, W.; Wu, F.; Swihart, M. T.; Ågren, H.; Prasad, P. N. Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969–2977.

    Article  Google Scholar 

  6. Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64–70.

    Article  Google Scholar 

  7. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss. S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Article  Google Scholar 

  8. Wang, M.; Mi, C. C.; Wang, W. C.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano 2009, 3, 1580–1586.

    Article  Google Scholar 

  9. Welsher, K.; Sherlock, S. P.; Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.

    Article  Google Scholar 

  10. Smith, A. M.; Mancini, M. C.; Nie, S. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

    Article  Google Scholar 

  11. Frangioni, J. V.; Nakayama, A.; Lim, Y. T.; Kim, S.; Stott, N. E.; Bawendi, M. G. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2003, 2, 50–64.

    Article  Google Scholar 

  12. Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695–3702.

    Article  Google Scholar 

  13. Wehrenberg, B. L.; Wang, C. J.; Guyot-Sionnest, P. Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 2002, 106, 10634–10640.

    Article  Google Scholar 

  14. Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X. S.; Sargent, E. H.; Kumacheva, E. PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv. Mater. 2004, 16, 926–929.

    Article  Google Scholar 

  15. Harrison, M. T.; Kershaw, S. V.; Burt, M. G.; Eychmüller, A.; Weller, H.; Rogach, A. L. Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Mater. Sci. Eng. B 2000, 69–70, 355–360.

    Article  Google Scholar 

  16. Yi, H.; Ghosh, D.; Ham, M.; Qi, J.; Barone, P. W.; Strano, M. S.; Belcher, A. M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 2012, 12, 1176–1183.

    Article  Google Scholar 

  17. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

    Article  Google Scholar 

  18. Robinson, J. T.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 2012, 134, 10664–10669.

    Article  Google Scholar 

  19. Cheng, L.; Yang, K.; Zhang, S.; Shao, M.; Lee, S.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res. 2010, 3, 722–732.

    Article  Google Scholar 

  20. An, M.; Cui, J.; He, Q.; Wang, L. Down-/up-conversion luminescence nanocomposites for dual-modal cell imaging. J. Mater. Chem. B 2013, 1, 1333–1339.

    Article  Google Scholar 

  21. Xing, H.; Bu, W.; Zhang, S.; Zheng, X.; Li, M.; Chen, F.; He, Q.; Zhou, L.; Peng, W.; Hua, Y. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 2012, 33, 1079–1089.

    Article  Google Scholar 

  22. Liu, K.; Liu, X.; Zeng, Q.; Zhang, Y.; Tu, L.; Liu, T.; Kong, X.; Wang, Y.; Cao, F.; Lambrechts, S. G.; et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 2012, 6, 4054–4062.

    Article  Google Scholar 

  23. Wu, S.; Milliron, D. J.; Aloni, S.; Altoea, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci.USA 2009, 106, 10917–10921.

    Article  Google Scholar 

  24. Li, P.; Peng, Q.; Li, Y. D. Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals. Adv. Mater. 2009, 21, 1945–1948.

    Article  Google Scholar 

  25. Liu, Y.; Tu, D.; Zhu, H.; Li, R.; Luo, W.; Chen, X. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266–3271.

    Article  Google Scholar 

  26. Bai, X.; Li, D.; Liu, Q.; Dong, B.; Xu, S.; Song, H. Concentration-controlled emission in LaF3:Yb3+/Tm3+ nanocrystals: Switching from UV to NIR regions. J. Mater. Chem. 2012, 22, 24698–24704.

    Article  Google Scholar 

  27. Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater. 2009, 19, 853–859.

    Article  Google Scholar 

  28. Liu, Y.; Wang, D.; Shi, J.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew. Chem. Int. Ed. 2013, 52, 4366–4369.

    Article  Google Scholar 

  29. Zhang, X. W.; Zhi, Z.; Zhang, X.; Marathe, A.; Cordes, D. B.; Weeks, B.; Chaudhuri, J. Tunable photoluminescence and energy transfer of YBO3:Tb3+, Eu3+ for white light emitting diodes. J. Mater. Chem. C 2013, 1, 7202–7207.

    Article  Google Scholar 

  30. Zhang, X. W.; Marathe, A.; Sandeep, S.; Holtz, M.; Davis, M.; Hope-Weeks, L. J. Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+. J. Mater. Chem. 2012, 22, 6485–6490.

    Article  Google Scholar 

  31. Zhang, X. W.; Zhang, M. F.; Zhu, Y. C.; Wang, P. F.; Xue, F.; Gu, J.; Bi, H. Y.; Qian, Y. T. Hydrothermal synthesis and luminescent properties of LaPO4:Eu 3D microstructures with controllable phase and morphology. Mater. Res. Bull. 2011, 45, 1324–1329.

    Article  Google Scholar 

  32. Pokhrel, M.; Mimun, L. C.; Yust, B.; Kumar, G. A.; Dhanale, A.; Tang, L.; Sardar, D. K. Stokes emission in GdF3:Nd3+ nanoparticles for bioimaging probes. Nanoscale 2014, 6, 1667–1674.

    Article  Google Scholar 

  33. Li, X.; Wang, R.; Zhang, F.; Zhou, L.; Shen, D.; Yao, C.; Zhao, D. Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in vitro and in vivo bioimaging excited at 800 nm. Sci Rep. 2013, 3, 3536

    Google Scholar 

  34. Wang, Y.; Liu, G.; Sun, L.; Xiao, J.; Zhou, J.; Yan, C. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200–7206.

    Article  Google Scholar 

  35. Wang, X.; Yan, X.; Kan, C.; Ma, K.; Xiao, Y.; Xiao, S. Enhancement of blue emission in β-NaYbF4:Tm3+/Nd3+ nanophosphors synthesized by nonclosed hydrothermal synthesis method. Appl. Phys. B-Lasers Opt. 2010, 101, 623–629.

    Article  Google Scholar 

  36. Wang, X.; Xiao, S.; Bu, Y.; Ding, J. Upconversion properties of Nd3+-Yb3+-Ho3+-doped β-Na(Y1.5Na0.5)F6 powders. J. Alloy. Compd. 2009, 477, 941–945.

    Article  Google Scholar 

  37. Wang, Z.; Hao, J. H.; Chan, H. L. W. Down- and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4:Yb3+, Er3+ submicrondisks. J. Mater. Chem. 2010, 20, 3178–3185.

    Article  Google Scholar 

  38. Gouveia-Netoa, A. S.; Costa, E. B. Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm. J. Appl. Phys. 2003, 94, 5678–5681.

    Article  Google Scholar 

  39. Lupei, V.; Lupei, A.; Ikesue, A. Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials. Appl. Phys. Lett. 2005, 86, 111118.

    Article  Google Scholar 

  40. Qiu, J.; Kawamoto, Y. Blue up-conversion luminescence and energy transfer process in Nd3+-Yb3+-Tm3+ Co-doped ZrF4-based glasses. J. Appl. Phys. 2002, 91, 954–959.

    Article  Google Scholar 

  41. Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 1953, 21, 836–850.

    Article  Google Scholar 

  42. Balda, R.; Fernández, J. Infrared to visible upconversion of Nd3+ ions in KPb2Br5 low photon crystal. Opt. Express 2006, 14, 3993–4004.

    Article  Google Scholar 

  43. Fernández, J.; Balda, R.; Iparraguirr, I.; Sanz, M.; Voda, M.; Al-Saleh, M.; Lobera, G. Upconversion processes and laser action in K5Nd(MoO4)4 stoichiometric crystal. Proc. of SPIE 2001, 4282, 258–265.

    Article  Google Scholar 

  44. Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 2011, 10, 968–973.

    Article  Google Scholar 

  45. Su, Q.; Han, S.; Xie, X.; Zhu, H.; Chen, H.; Chen, C.; Liu, R.; Chen, X.; Wang, F.; Liu, X. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 2012, 134, 20849–20857.

    Article  Google Scholar 

  46. Meijer, J.; Aarts, L.; Van der Ende, B. M.; Vlugt, T. J. H.; Meijerink, A. Downconversion for solar cells in YF3:Nd3+, Yb3+. Phys. Rev. B 2010, 81, 035107.

    Article  Google Scholar 

  47. Song, F.; Han, L.; Zou, C.; Su, J.; Zhang, K.; Yan, L.; Tian, J. Upconversion blue emission dependence on the pump mechanism for Tm3+-heavy-doped NaY(WO4)2 crystal. Appl. Phys. B 2007, 86, 653–660.

    Article  Google Scholar 

  48. Wu, Y.; Shi, M.; Zhao, L.; Feng, W.; Li, F.; Huang, C. Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging in vivo. Biomaterials 2014, 35, 5830–5839.

    Article  Google Scholar 

  49. Boyer, J. C.; van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417–1419.

    Article  Google Scholar 

  50. Wen, H.; Zhu, H.; Chen, X.; Hung, T. F.; Wang, B.; Zhu, G.; Yu, S. F.; Wang, F. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 13419–13423.

    Article  Google Scholar 

  51. Wong, H. T.; Chan, H. L. W.; Hao, J. H. Magnetic and luminescent properties of multifunctional GdF3: Eu3+ nanoparticles. Appl. Phys. Lett. 2009, 95, 022512.

    Article  Google Scholar 

  52. Zeng, S.; Ren, G.; Xu, C.; Yang, Q. Modifying crystal phase, shape, size, optical and magnetic properties of monodispersed multifunctional NaYbF4 nanocrystals through lanthanide doping. CrystEngComm 2011, 13, 4276–4281.

    Article  Google Scholar 

  53. Ren, G.; Zeng, S.; Hao, J. Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods. J. Phys. Chem. C 2011, 115, 20141–20147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jharna Chaudhuri.

Additional information

These authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, Z., Zhang, X. et al. Magnetic and optical properties of NaGdF4:Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window. Nano Res. 8, 636–648 (2015). https://doi.org/10.1007/s12274-014-0548-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0548-2

Keywords

Navigation