Skip to main content
Log in

Active catalysts based on cobalt oxide@cobalt/N-C nanocomposites for oxygen reduction reaction in alkaline solutions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Over the past few years, electrocatalysis for the oxygen reduction reaction in alkaline solutions has undergone tremendous advances, and non-precious metal catalysts are of prime interest. In this study, we present a highly promising CoO@Co/N-C (where N-C represents a N-doped carbon material) catalyst, achieving an onset potential of 0.99 V (versus the reversible hydrogen electrode (RHE)) and a limiting current density of 7.07 mA·cm−2 (at 0.3 V versus RHE) at a rotation rate of 2,500 rpm in an O2-saturated 0.1 M KOH solution, comparable to a commercial Pt/C catalyst. The H2-O2 alkaline fuel cell test of CoO@Co/N-C as the cathode reveals a maximum power density of 237 mW·cm−2. Detailed investigation clarifies that a synergistic effect, induced by C-N, Co-N-C, and CoO/Co moieties, is responsible for the bulk of the gain in catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

    Article  Google Scholar 

  2. Oh, S.; Black, R.; Pomerantseva, E.; Lee, J.; Nazar, L. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries. Nat. Chem. 2012, 4, 1004–1010.

    Article  Google Scholar 

  3. Kiros, Y.; Pirjamali, M.; Bursell, M. Oxygen reduction electrodes for electrolysis in chlor-alkali cells. Electrochim. Acta. 2006, 51, 3346–3350.

    Article  Google Scholar 

  4. Tiwari, J.; Tiwari, R.; Singh, G.; Kim, K. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553–578.

    Article  Google Scholar 

  5. Liang, H.; Wei, W.; Wu, Z.; Feng, X.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.

    Article  Google Scholar 

  6. Vujković, M.; Gavrilov, N.; Pašti, I.; Krstić, J.; Travas-Sejdic, J.; Ćirić-Marjanović, G.; Mentus, S. Superior capacitive and electrocatalytic properties of carbonized nanostructured polyaniline upon a low-temperature hydrothermal treatment. Carbon 2013, 64, 472–486.

    Article  Google Scholar 

  7. Topalov, A.; Katsounaros, I.; Auinger, M.; Cherevko, S.; Meier, J.; Klemm, S.; Mayrhofer, K. Dissolution of platinum: Limits for the deployment of electrochemical energy conversion? Angew. Chem. Int. Ed. 2012, 51, 12613–12615.

    Article  Google Scholar 

  8. Nesselberger, M.; Roefzaad, M.; Hamou, R.; Biedermann, P.; Schweinberger, F.; Kunz, S.; Schloegl, K.; Wiberg, G.; Ashton, S.; Heiz, U. et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 2013, 12, 919–924.

    Article  Google Scholar 

  9. Wu, J.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

    Article  Google Scholar 

  10. Zhang, X.; Lu, G. Computational design of core/shell nanoparticles for oxygen reduction reactions. J. Phys. Chem. Lett. 2014, 5, 292–297.

    Article  Google Scholar 

  11. Parvez, K.; Yang, S.; Hernandez, Y.; Winter, A.; Turchanin, A.; Feng, X.; Müllen, K. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. ACS Nano 2012, 6, 9541–9550.

    Article  Google Scholar 

  12. Wen, Z.; Ci, S.; Zhang, F.; Feng, X.; Cui, S.; Mao, S.; Luo, S.; He, Z.; Chen. J. Nitrogen-enriched core-shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 1399–1404.

    Article  Google Scholar 

  13. Gavrilov, N.; Pašti, I.; Mitrić, M.; Travas-Sejdic, J.; Ćirić-Marjanović, G.; Mentus, S. Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media. J. Power Sources 2012, 220, 306–316.

    Article  Google Scholar 

  14. Huang, H.; Shown, I.; Chang, S.; Hsu, H.; Du, H.; Kuo, M.; Wong, K.; Wang, S.; Wang, C.; Chen, L. et al. Pyrolyzed cobalt corrole as a potential non-precious catalyst for fuel cells. Adv. Funct. Mater. 2012, 22, 3500–3508.

    Article  Google Scholar 

  15. Tian, J.; Morozan, A.; Sougrati, M.; Lefevre, M.; Chenitz, R.; Dodelet, J.; Jones, D.; Jaouen, F. Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength. Angew. Chem. Int. Ed. 2013, 52, 6867–6870.

    Article  Google Scholar 

  16. Jiang, H.; Su, Y.; Zhu, Y.; Shen, J.; Yang, X.; Feng, Q.; Li, C. Hierarchical interconnected macro-/mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions. J. Mater. Chem. A 2013, 1, 12074–12081.

    Article  Google Scholar 

  17. Liu, J.; Jiang, L.; Tang, Q.; Zhang, B.; Su, D.; Wang, S.; Sun, G. Coupling effect between cobalt oxides and carbon for oxygen reduction reaction. ChemSusChem 2012, 5, 2315–2318.

    Article  Google Scholar 

  18. Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460–469.

    Article  Google Scholar 

  19. Huang, C.; Liu, S.; Hwang, W. Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC). Energy 2011, 36, 4410–4414.

    Article  Google Scholar 

  20. Queiroz, A.; Lima, F. Electrocatalytic activity and stability of Co and Mn-based oxides for the oxygen reduction reaction in alkaline electrolyte. J. Electroanal. Chem. 2013, 707, 142–150.

    Article  Google Scholar 

  21. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  22. Liang, Y.; Wang, H.; Diao, P.; Chang, W.; Hong, G.; Li, Y.; Gong, M.; Xie, L.; Zhou, J.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.

    Article  Google Scholar 

  23. Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J.; Wu, G.; Chung, H.; Johnston, C.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4, 114–130.

    Article  Google Scholar 

  24. Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 2011, 4, 1238–1254.

    Article  Google Scholar 

  25. Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Song, H.; Zhong, Y.; Zhang, B. High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013, 3, 1765.

    Google Scholar 

  26. Wu, G.; More, K.; Johnston, C.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  Google Scholar 

  27. Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416.

    Article  Google Scholar 

  28. Ramaswamy, N.; Tylus, U.; Jia, Q.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: Linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443–15449.

    Article  Google Scholar 

  29. Jagadeesh, R.; Junge, H.; Pohl, M.; Radnik, J.; Bruckner, A.; Beller, M. Selective oxidation of alcohols to esters using heterogeneous Co3O4-N@C catalysts under mild conditions. J. Am. Chem. Soc. 2013, 135, 10776–10782.

    Article  Google Scholar 

  30. Westerhaus, F.; Jagadeesh, R.; Wienhofer, G.; Pohl, M.; Radnik, J.; Surkus, A.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

    Article  Google Scholar 

  31. Huang, D.; Zhang, B.; Zhang, Y.; Zhan, F.; Xu, X.; Shen, Y.; Wang, M. Electrochemically reduced graphene oxide multilayer films as metal-free electrocatalysts for oxygen reduction. J. Mater. Chem. A 2013, 1, 1415–1420.

    Article  Google Scholar 

  32. Chen, X.; Tong, M. Solvothermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res., 2007, 40, 162–170.

    Article  Google Scholar 

  33. Qiu, B.; Pan, C.; Qian, W.; Peng, Y.; Qiu, L.; Yan, F. Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J. Mater. Chem. A 2013, 1, 6373–6378.

    Article  Google Scholar 

  34. Huang, H.; Shown, I.; Chang, S.; Hsu, H.; Du, H.; Kuo, M.; Wong, K.; Wang, S.; Wang, C.; Chen, L. et al. Pyrolyzed cobalt corrole as a potential non-precious catalyst for fuel cells. Adv. Funct. Mater. 2012, 22, 3500–3508.

    Article  Google Scholar 

  35. Pylypenko, S.; Mukherjee, S.; Olson, T.; Atanassov, P. Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochim. Acta 2008, 53, 7875–7883.

    Article  Google Scholar 

  36. Guo, S.; Zhang, S.; Wu, L.; Sun, S. Co/CoO Nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew. Chem. Int. Ed. 2012, 51, 11770–11773.

    Article  Google Scholar 

  37. Groen, J.; Peffer, L.; Pérez Ramírez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 2003, 60, 1–17.

    Article  Google Scholar 

  38. Sing, K.; Everett, D.; Haul, R.; Moscou, L.; Pierotti, R.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619.

    Article  Google Scholar 

  39. Li, C.; Xu, G.; Zhang, B.; Gong, J. High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods. J. Appl. Catal. B 2012, 115–116, 201–208.

    Article  Google Scholar 

  40. Tan, Y.; Xu, C.; Chen, G.; Fang, X.; Zheng, N.; Xie, Q. Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction. Adv. Funct. Mater. 2012, 22, 4584–4591.

    Article  Google Scholar 

  41. Chen, Z.; Higgins, D.; Yu, A.; Zhang, L.; Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

    Article  Google Scholar 

  42. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  43. Sun, X.; Song, P.; Zhang, Y.; Liu, C.; Xu, W.; Xing, W. A class of high performance metal-free oxygen reduction electrocatalysts based on cheap carbon blacks. Sci. Rep. 2013, 3, 2505.

    Google Scholar 

  44. Qu, L.; Liu, Y.; Baek, J.; Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    Article  Google Scholar 

  45. Liu, R.; Wu, D.; Feng, X.; Mullen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 2010, 49, 2565–2569.

    Article  Google Scholar 

  46. Shi, Z.; Liu, H.; Lee, K.; Dy, E.; Chlistunoff, J.; Blair, M.; Zelenay, P.; Zhang, J.; Liu, Z. Theoretical study of possible active site structures in cobalt-polypyrrole catalysts for oxygen reduction reaction. J. Phys. Chem. C 2011, 115, 16672–16680.

    Article  Google Scholar 

  47. Saidi, W. A. Oxygen reduction electrocatalysis using N-doped graphene quantum-dots. J. Phys. Chem. Lett. 2013, 4, 4160–4165.

    Article  Google Scholar 

  48. Tang, Y.; Burkert, S.; Zhao, Y.; Saidi, W. A.; Star, A. The effect of metal catalyst on the electrocatalytic activity of nitrogen-doped carbon nanotubes. J. Phys. Chem. C 2013, 117, 25213–25221.

    Article  Google Scholar 

  49. van Veen, J.; Colijn, H.; van Baar, J. On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim. Acta 1988, 33, 801–804.

    Article  Google Scholar 

  50. Scherson, D.; Gupta, S.; Fierro, C.; Yeager, E.; Kordesch, M.; Eldridge, J.; Hoffman, R.; Blue, J. Cobalt tetramethoxyphenyl porphyrin-emission Mössbauer spectroscopy and O2 reduction electrochemical studies. Electrochim. Acta 1983, 28, 1205–1209.

    Article  Google Scholar 

  51. Chen, J.; Takanabe, K.; Ohnishi, R.; Lu, D.; Okada, S.; Hatasawa, H.; Moriok, H.; Antonietti, M.; Kubota, J.; Domen, K. Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template. Chem. Commun. 2010, 46, 7492–7494.

    Article  Google Scholar 

  52. Wohlgemuth, S.; Fellinger, T.; Jäker, P.; Antonietti, M. Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction. J. Mater. Chem. A 2013, 1, 4002–4009.

    Article  Google Scholar 

  53. Dodelet, J. Oxygen reduction in PEM fuel cell conditions: Heat-treated non-precious metal-N4 macrocycles and beyond. In N 4-macrocyclic metal complexes. Zagal, J.; Bedioui, F.; Dedelet, J., Eds.; Springer: New York, 2006; pp 83–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Shen or Mingkui Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Luo, Y., Li, S. et al. Active catalysts based on cobalt oxide@cobalt/N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Res. 7, 1054–1064 (2014). https://doi.org/10.1007/s12274-014-0468-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0468-1

Keywords

Navigation