Skip to main content
Log in

Polymer nanowire vertical transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

By utilizing poly(3-hexylthiophene) (P3HT) polymer nanowires with diameters of ∼15 nm as the vertical channel material, a polymer nanowire vertical transistor has been demonstrated for the first time. The P3HT nanowires were characterized by absorption spectroscopy and scanning electron microscopy. A saturated output current was created by increasing the thickness of the polymer layers between the electrodes through several spin-coating cycles of the polymer nanowires prepared in a marginal solvent. The carrier mobility was also increased through utilization of polymer nanowires with strong interchain interactions. By introducing a small hole injection barrier between the emitter and semiconducting polymer, an on/off current ratio of 1,500 was obtained. The operating voltage is less than 2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, W. H.; Cho, J. H.; Cho, K. Control of mesoscale and nanoscale ordering of organic semiconductors at the gate dielectric/semiconductor interface for organic transistors. J. Mater. Chem. 2010, 20, 2549–2561.

    Article  Google Scholar 

  2. Braga, D.; Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 2009, 21, 1473–1486.

    Article  Google Scholar 

  3. Hasegawa, T.; Takeya, J. Organic field-effect transistors using single crystals. Sci. Technol. Adv. Mater. 2009, 10, 024314.

    Article  Google Scholar 

  4. Chao, Y. C.; Yang, S. L.; Meng, H. F.; Horng, S. F. Polymer hot-carrier transistor. Appl. Phys. Lett. 2005, 87, 253508.

    Article  Google Scholar 

  5. Chao, Y. C.; Xie, M. H.; Dai, M. Z.; Meng, H. F.; Horng, S. F.; Hsu, C. S. Polymer hot-carrier transistor with low bandgap emitter. Appl. Phys. Lett. 2008, 92, 093310.

    Article  Google Scholar 

  6. Cheng, S. S.; Ramesh, M.; Chen, G. Y.; Fung, C. L.; Chen, L. M.; Wu, M. C.; Lin, H. C.; Chu, C. W. A cascade energy band structure enhances the carrier energy in organic vertical-type triodes. Org. Electron. 2013, 14, 2284–2289.

    Article  Google Scholar 

  7. Cheng, S. S.; Chen, G. Y.; Chen, J. H.; Wu, M. C.; Chu, C. W. Low-voltage complementary inverters employing organic vertical-type triodes. Org. Electron. 2010, 11, 692–695.

    Article  Google Scholar 

  8. Yang, C. Y.; Ou, T. M.; Cheng, S. S.; Wu, M. C.; Lin, S. Y.; Chan, I. M.; Chan, Y. J. Vertical organic triodes with a high current gain operated in saturation region. Appl. Phys. Lett. 2006, 89, 183511.

    Article  Google Scholar 

  9. Huang, J.; Ma, D.; Hümmelgen, I. A. Performance of hybrid p-type vertical transistors with poly(N-vinylcarbazole) as emitter and the transfer mechanism of charge carriers through the base. Semicond. Sci. Technol. 2013, 28, 115001.

    Article  Google Scholar 

  10. Nakayama, K. I.; Fujimoto, S. Y.; Yokoyama, M. High-current and low-voltage operation of metal-base organic transistors with LiF/Al emitter. Appl. Phys. Lett. 2006, 88, 153512.

    Article  Google Scholar 

  11. Yi, M.; Xia, X.; Yang, T.; Liu, Y.; Xie, L.; Zhou, X.; Huang, W. Vertical n-type organic transistors with tri(8-hydroxyquinoline) aluminum as collector and fullerene as emitter. Appl. Phys. Lett. 2011, 98, 073309.

    Article  Google Scholar 

  12. Chao, Y. C.; Ku, M. C.; Tsai, W. W.; Zan, H. W.; Meng, H. F.; Tsai, H. K.; Horng, S. F. Polymer space-charge-limited transistor as a solid-state vacuum tube triode. Appl. Phys. Lett. 2010, 97, 223307.

    Article  Google Scholar 

  13. Chao, Y. C.; Lin, Y. C.; Dai, M. Z.; Zan, H. W.; Meng, H. F. Reduced hole injection barrier for achieving ultralow voltage polymer space-charge-limited transistor with a high on/off current ratio. Appl. Phys. Lett. 2009, 95, 203305.

    Article  Google Scholar 

  14. Yang, Y.; Heeger, A. J. A new architecture for polymer transistors. Nature 1994, 372, 344–346.

    Article  Google Scholar 

  15. McElvain, J.; Keshavarz, M.; Wang, H.; Wudl, F.; Heeger, A. J. Fullerene-based polymer grid triodes. J. Appl. Phys. 1997, 81, 6468–6472.

    Article  Google Scholar 

  16. Kudo, K.; Wang, D. X.; Iizuka, M.; Kuniyoshi, S.; Tanaka, K. Schottky gate static induction transistor using copper phthalocyanine films. Thin Solid Films 1998, 331, 51–54.

    Article  Google Scholar 

  17. Watanabe, Y.; Iechi, H.; Kudo, K. Electrical characteristics of flexible organic static induction transistors under bending conditions. Appl. Phys. Lett. 2006, 89, 233509.

    Article  Google Scholar 

  18. Fujimoto, K.; Hiroi, T.; Kudo, K.; Nakamura, M. High-performance, vertical-type organic transistors with built-in nanotriode arrays. Adv. Mater. 2007, 19, 525–530.

    Article  Google Scholar 

  19. Fujimoto, K.; Hiroi, T.; Nakamura, M. Organic static induction transistors with nano-hole arrays fabricated by colloidal lithography. e-J. Surf. Sci. Nanotechnol. 2005, 3, 327–331.

    Article  Google Scholar 

  20. Ohashi, N.; Nakamura, M.; Muraishi, N.; Sakai, M.; Kudo, K. Fabrication and device simulation of single nano-scale organic static induction transistors. IEICE Trans. Electron. 2006, E89, 1765–1770.

    Article  Google Scholar 

  21. Chao, Y. C.; Meng, H. F.; Horng, S. F. Polymer space-charge-limited transistor. Appl. Phys. Lett. 2006, 88, 223510.

    Article  Google Scholar 

  22. Chao, Y. C.; Meng, H. F.; Horng, S. F.; Hsu, C. S. High-performance solution-processed polymer space-charge-limited transistor. Org. Electron. 2008, 9, 310–316.

    Article  Google Scholar 

  23. Rossi, L.; Serbena, J. P. M.; Meruvia, M. S.; Hümmelgen, I. A.; Stori, E. M.; Saul, C. K.; Wang, Z. Y. Hybrid vertical architecture transistor with 2,6-Diphenylindenofluorene based emitter and base permeability controlled by polystyrene spheres lithography. J. Nanosci. Nanotechnol. 2010, 10, 2389–2393.

    Article  Google Scholar 

  24. Rossi, L.; Seidel, K. F.; Machado, W. S.; Hümmelgen, I. A. Low voltage vertical organic field-effect transistor with polyvinyl alcohol as gate insulator. J. Appl. Phys. 2011, 110, 094508.

    Article  Google Scholar 

  25. Li, S. H.; Xu, Z.; Yang, G.; Ma, L.; Yang, Y. Solution-processed poly(3-hexylthiophene) vertical organic transistor. Appl. Phys. Lett. 2008, 93, 213301.

    Article  Google Scholar 

  26. Chao, Y. C.; Wang, K. R.; Meng, H. F.; Zan, H. W.; Hsu, Y. H. Large-area non-close-packed nanosphere deposition by blade coating for vertical space-charge-limited transistor. Org. Electron. 2012, 13, 3177–3182.

    Article  Google Scholar 

  27. Fischer, A.; Scholz, R.; Leo, K.; Lüssem. B. An all C60 vertical transistor for high frequency and high current density applications. Appl. Phys. Lett. 2012, 101, 213303.

    Article  Google Scholar 

  28. Li, C. H.; Stehlin, F.; Wang, K. R.; Lin, Y. H.; Wieder, F.; Soppera, O.; Zan, H. W.; Meng, H. F. Achieving saturation in vertical organic transistors for organic light-emitting diode driving by nanorod channel geometric control. Appl. Phys. Lett. 2013, 102, 163305.

    Article  Google Scholar 

  29. Lin, Y. H.; Chang, Y. F.; Meng, H. F.; Zan, H. W.; Hsu, W.; Chen, C. H. Soldering of solution-processed organic vertical transistor and light-emitting diode on separate glass substrates by tin micro-balls. Org. Electron. 2013, 14, 3052–3060.

    Article  Google Scholar 

  30. Kim, J. H.; Park, J. H.; Lee, J. H.; Kim, J. S.; Sim, M.; Shim, C.; Cho, K. Bulk heterojunction solar cells based on preformed polythiophene nanowires via solubility-induced crystallization. J. Mater. Chem. 2010, 20, 7398–7405.

    Article  Google Scholar 

  31. Wang, T.; Dunbar, A. D. F.; Staniec, P. A.; Pearson, A. J.; Hopkinson, P. E.; MacDonald, J. E.; Lilliu, S.; Pizzey, C.; Terrill, N. J.; Donald, A. M. et al. The development of nanoscale morphology in polymer: Fullerene photovoltaic blends during solvent casting. Soft Matter 2010, 6, 4128–4134.

    Article  Google Scholar 

  32. Brown, P. J.; Thomas, D. S.; Köhler, A.; Wilson, J. S.; Kim, J. S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 2003, 67, 064203.

    Article  Google Scholar 

  33. Chiguvare, Z.; Parisi, J.; Dyakonov, V. Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices. J. Appl. Phys. 2003, 94, 2440–2448.

    Article  Google Scholar 

  34. Kim, S. Y.; Lee, J. L.; Kim, K. B.; Tak, Y. H. Effect of ultraviolet-ozone treatment of indium-tin-oxide on electrical properties of organic light emitting diodes. J. Appl. Phys. 2004, 95, 2560–2563.

    Article  Google Scholar 

  35. Choulis, S. A.; Choong, V. E.; Patwardhan, A.; Mathai, M. K.; So, F. Interface modification to improve hole-injection properties in organic electronic devices. Adv. Funct. Mater. 2006, 16, 1075–1080.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchiang Chao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, T. & Chao, Y. Polymer nanowire vertical transistors. Nano Res. 7, 938–944 (2014). https://doi.org/10.1007/s12274-014-0458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0458-3

Keywords

Navigation