Skip to main content
Log in

Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transparent metal oxide nanowires (NWs) have attracted intense research interest in recent years. We report here the synthesis of interesting ladder-like metal oxide NWs, including In2O3, SnO2, ZnO, and Ga2O3, via a facile chemical vapor deposition (CVD) method. Their structural features and growth mechanism are demonstrated in detail by using the ladder-like In2O3 NWs as an example. Single ladder-like NW-based field-effect transistors (FETs) and photodetectors (PDs) of SnO2 were fabricated in order to investigate their electrical transport and light absorption properties. Compared with straight NW-based FETs which operate in an enhancement mode (E-mode), FETs build on ladder-like NWs operate in a depletion mode (D-mode). The ladder-like NWs also give higher carrier concentrations than conventional single nanowires. Finite-difference time-domain (FDTD) simulations have been performed on the ladder-like NWs and the results reveal a great enhancement of light absorption with both transverse-electric (TE) and transverse-magnetic (TM) polarization modes, which is in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  Google Scholar 

  2. Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale fieldeffect transistors as localized bioprobes. Science 2010, 329, 830–834.

    Article  Google Scholar 

  3. Shen, G.; Liang, B.; Wang, X.; Huang, H.; Chen, D.; Wang, Z. L. Ultrathin In2O3 nanowires with diameters below 4 nm: Synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications. ACS Nano 2011, 5, 6148–6155.

    Article  Google Scholar 

  4. Duan, X.; Huang, Y.; Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2002, 2, 487–490.

    Article  Google Scholar 

  5. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

    Article  Google Scholar 

  6. Fan, Z.; Ho, J. C.; Jacobson, Z. A.; Razavi, H.; Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. PNAS 2008, 105, 11066–11070.

    Article  Google Scholar 

  7. Panev, N.; Persson, A. I.; Sköld, N.; Samuelson, L. Sharp exciton emission from single InAs quantum dots in GaAs nanowires. Appl. Phys. Lett. 2003, 83, 2238–2240.

    Article  Google Scholar 

  8. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  Google Scholar 

  9. Cao, L. Y.; Park, J. S.; Fan, P. Y.; Clemens, B.; Brongersma, M. L. Resonant germanium nanoantenna photodetectors. Nano Lett. 2010, 10, 1229–1233.

    Article  Google Scholar 

  10. Pauzauskie, P. J.; Sirbuly, D. J.; Yang, P. D. Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. 2006, 96, 143903(1–4).

    Article  Google Scholar 

  11. Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793–1798.

    Article  Google Scholar 

  12. Pettersson, H.; Trägårdh, J.; Persson, A. I.; Landin, L.; Hessman, D.; Samuelson, L. Infrared photodetectors in heterostructure nanowires. Nano Lett. 2006, 6, 229–232.

    Article  Google Scholar 

  13. Lao, J.; Huang, J.; Wang, D.; Ren, Z. Self-assembled In2O3 nanocrystal chains and nanowires networks. Adv. Mater. 2004, 16, 65–69.

    Article  Google Scholar 

  14. El Mir, L.; Bourgoin, J. C. Defect-enhanced electron transport through semiconductor barriers. Phys. Stat. Sol. (b) 1998, 207, 577–594.

    Article  Google Scholar 

  15. Shen, J. T.; Fan, S. H. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 2005, 30, 2001–2003.

    Article  Google Scholar 

  16. Borgström, M. T.; Immink, G.; Ketelaars, B.; Algra, R.; Bakkers, E. P. A. M. Synergetic nanowire growth. Nat. Nanotechnol. 2007, 2, 541–544.

    Article  Google Scholar 

  17. Nikoobakht, B.; Wang, X. D.; Herzing, A.; Shi, J. Scalable synthesis and device integration of self-registered one-dimensional zinc oxide nanostructures and related materials. Chem. Soc. Rev. 2013, 42, 342–365.

    Article  Google Scholar 

  18. Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Gonçalves, A. M. F.; Marques, A. J. S.; Martins, R. F. P.; Pereira, L. M. N. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 2004, 85, 2541–2543.

    Article  Google Scholar 

  19. Fan, Z.; Wang, D.; Chang, P. C.; Tseng, W. Y.; Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 2004, 85, 5923–5925.

    Article  Google Scholar 

  20. Cheng, Y.; Xiong, P.; Fields, L.; Zheng, J. P.; Yang, R. S.; Wang, Z. L. Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors. Appl. Phys. Lett. 2006, 89, 093114(1–3).

    Google Scholar 

  21. Ikarashi, N.; Yako, K.; Uejima, K.; Yamamoto, T.; Ikezawa, T.; Hane, M. Correlation among crystal defects, depletion regions and junction leakage in sub-30-nm gate-length MOSFETs: Direct examinations by electron holography. JSAP 2009, 202–203.

    Google Scholar 

  22. Fang, G. J.; Li, D.; Yao, B. L. Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target. Thin Solid Films 2002, 418, 156–162.

    Article  Google Scholar 

  23. Jiménez, V. M.; Espinós, J. P.; Caballero, A.; Contreras, L.; Fernández, A.; Justo, A.; González-Elipe, A. R. SnO2 thin films prepared by ion beam induced CVD: Preparation and characterization by X-ray absorption spectroscopy. Thin Solid Films 1999, 353, 113–123.

    Article  Google Scholar 

  24. Snaith, H. J.; Ducati, C. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett. 2010, 10, 1259–1265.

    Article  Google Scholar 

  25. Yu, B.; Zhu, C.; Gan, F.. Exciton spectra of SnO2 nanocrystals with surficial dipole layer. Opt. Mater. 1997, 7, 15–20.

    Article  Google Scholar 

  26. Yang, H. Y.; Yu, S. F.; Lau, S. P.; Tsang, S. H.; Xing, G. Z.; Wu, T. Ultraviolet coherent random lasing in randomly assembled SnO2 nanowires. Appl. Phys. Lett. 2009, 94, 241121(1–3).

    Google Scholar 

  27. Li, Y.; Yin, W.; Deng, R.; Chen, R.; Chen, J.; Yan, Q.; Yao, B.; Sun, H.; Wei, S. H.; Wu, T. Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipoleforbidden rule. NPG Asia Mater. 2012, 4, e30(1–6).

    Article  Google Scholar 

  28. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.

    Article  Google Scholar 

  29. Hu, L.; Yan, J.; Liao, M.; Wu, L.; Fang, X. Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small 2011, 7, 1012–1017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhen Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, B., Huang, H., Liu, Z. et al. Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties. Nano Res. 7, 272–283 (2014). https://doi.org/10.1007/s12274-013-0394-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0394-7

Keywords

Navigation