Skip to main content
Log in

Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electrocatalytic activity for oxygen reduction reaction (ORR) at neutral pH of citrate-capped silver nanoparticles (diameter = 18 nm) supported on glassy carbon (GC) is investigated voltammetrically. Novelly, the modification of the substrate by nanoparticles sticking to form a random nanoparticle array and the voltammetric experiments are carried out simultaneously by immersion of the GC electrode in an air-saturated 0.1 M NaClO4 solution (pH = 5.8) containing chemically-synthesized nanoparticles.

The experimental voltammograms of the resulting nanoparticle array are simulated with homemade programs according to the two-proton, two-electron reduction of oxygen to hydrogen peroxide where the first electron transfer is rate determining. In the case of silver electrodes, the hydrogen peroxide generated is partially further reduced to water via heterogeneous decomposition.

Comparison of the results obtained on a silver macroelectrode and silver nanoparticles indicates that, for the silver nanoparticles and particle coverages (0.035%–0.457%) employed in this study, the ORR electrode kinetics is slower and the production of hydrogen peroxide larger on the glassy carbon-supported nanoparticles than on bulk silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, S.; Win, K. Y.; Liu, S. H.; Teng, C. P.; Zheng, Y. G.; Han, M. Y. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 2013, 5, 3127–3148.

    Article  CAS  Google Scholar 

  2. Santos, A.; Kumeria, T.; Losic, D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trac-Trends Anal. Chem. 2013, 44, 25–38.

    Article  CAS  Google Scholar 

  3. Campbell, F. W.; Compton, R. G. The use of nanoparticles in electroanalysis: An updated review. Anal. Bioanal. Chem. 2010, 396, 241–259.

    Article  CAS  Google Scholar 

  4. Majeed, K.; Jawaid, M.; Hassan, A.; Abu Bakar, A.; Abdul Khalil, H. P. S.; Salema, A. A.; Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 2013, 46, 391–410.

    Article  CAS  Google Scholar 

  5. Zhang, L.; Zhang, J. J.; Wilkinson, D. P.; Wang, H. J. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J. Power Sources 2006, 156, 171–182.

    Article  CAS  Google Scholar 

  6. Tammeveski, L.; Erikson, H.; Sarapuu, A.; Kozlova, J.; Ritslaid, P.; Sammelselg, V.; Tammeveski, K. Electrocatalytic oxygen reduction on silver nanoparticle/multi-walled carbon nanotube modified glassy carbon electrodes in alkaline solution. Electrochem. Commun. 2012, 20, 15–18.

    Article  CAS  Google Scholar 

  7. Han, J. J.; Li, N.; Zhang, T. Y. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J. Power Sources 2009, 193, 885–889.

    Article  CAS  Google Scholar 

  8. Yeager, E. Electrocatalysts for O2 reduction. Electrochim. Acta 1984, 29, 1527–1537.

    Article  CAS  Google Scholar 

  9. Lim, D. H.; Wilcox, J. Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J. Phys. Chem. C 2012, 116, 3653–3660.

    Article  CAS  Google Scholar 

  10. Yashtulov, N. A.; Revina, A. A.; Flid, V. R. The mechanism of oxygen catalytic reduction in the presence of platinum and silver nanoparticles. Russ. Chem. Bull. 2010, 59, 1488–1494.

    Article  CAS  Google Scholar 

  11. Spendelow, J. S.; Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 2007, 9, 2654–2675.

    Article  CAS  Google Scholar 

  12. Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.

    Article  CAS  Google Scholar 

  13. Appleby, A. J. Oxygen reduction and corrosion kinetics on phase-oxide-free palladium and silver electrodes as a function of temperature in 85% orthophosphoric acid. J. Electrochem. Soc. 1970, 117, 1373–1378.

    Article  CAS  Google Scholar 

  14. Sánchez-Sánchez, C. M.; Bard, A. J. Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. Anal. Chem. 2009, 81, 8094–8100.

    Article  Google Scholar 

  15. Horrocks, B. R.; Schmidtke, D.; Heller, A.; Bard, A. J. Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces. Anal. Chem. 1993, 65, 3605–3614.

    Article  CAS  Google Scholar 

  16. Chatenet, M.; Genies-Bultel, L.; Aurousseau, M.; Durand, R.; Andolfatto, F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum. J. Appl. Electrochem. 2002, 32, 1131–1140.

    Article  CAS  Google Scholar 

  17. Adanuvor, P. K.; White, R. E. Oxygen reduction on silver in 6.5M caustic soda solution. J. Electrochem. Soc. 1988, 135, 2509–2517.

    Article  CAS  Google Scholar 

  18. Fuller, T.; Gasteiger, H. A.; Cleghorn, S.; Ramani, V.; Zhao, T.; Nguyen, T. V.; Haug, A.; Bock, C.; Lamy, C.; Ota, K. Proton Exchange Membrane Fuel Cells 7; The Electrochemical Society: Pennington, 2007.

    Google Scholar 

  19. Sethuraman, V. A.; Weidner, J. W.; Haug, A. T.; Pemberton, M.; Protsailo, L. V. Importance of catalyst stability vis-à-vis hydrogen peroxide formation rates in PEM fuel cell electrodes. Electrochim. Acta 2009, 54, 5571–5582.

    Article  CAS  Google Scholar 

  20. Seidel, Y. E.; Schneider, A.; Jusys, Z.; Wickman, B.; Kasemo, B.; Behm, R. J. Mesoscopic mass transport effects in electrocatalytic processes. Faraday Discuss. 2009, 140, 167–184.

    Article  Google Scholar 

  21. Ruvinskiy, P. S.; Bonnefont, A.; Pham-Huu, C.; Savinova, E. R. Using ordered carbon nanomaterials for shedding light on the mechanism of the cathodic oxygen reduction reaction. Langmuir 2011, 27, 9018–9027.

    Article  CAS  Google Scholar 

  22. Zhang, Y. R.; Asahina, S.; Yoshihara, S.; Shirakashi, T. Oxygen reduction on Au nanoparticle deposited boron-doped diamond films. Electrochim. Acta 2003, 48, 741–747.

    Article  CAS  Google Scholar 

  23. Uchida, H.; Yano, H.; Wakisaka, M.; Watanabe, M. Electrocatalysis of the oxygen reduction reaction at Pt and Pt-alloys. Electrochemistry 2011, 79, 303–311.

    Article  CAS  Google Scholar 

  24. Jiang, L.; Hsu, A.; Chu, D.; Chen, R. Size-dependent activity of palladium nanoparticles for oxygen electroreduction in alkaline solutions. J. Electrochem. Soc. 2009, 156, B643–B649.

    Article  CAS  Google Scholar 

  25. Chen, S. L.; Kucernak, A. Electrocatalysis under conditions of high mass transport rate: Oxygen reduction on single submicrometer-sized Pt particles supported on carbon. J. Phys. Chem. B 2004, 108, 3262–3276.

    Article  CAS  Google Scholar 

  26. Antoine, O.; Bultel, Y.; Durand, R. Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®. J. Electroanal. Chem. 2001, 499, 85–94.

    Article  CAS  Google Scholar 

  27. Lim, E. J.; Choi, S. M.; Seo, M. H.; Kim, Y.; Lee, S.; Kim, W. B. Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem. Commun. 2013, 28, 100–103.

    Article  CAS  Google Scholar 

  28. Singh, P.; Buttry, D. A. Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. J. Phys. Chem. C 2012, 116, 10656–10663.

    Article  CAS  Google Scholar 

  29. Garcia, A. C.; Gasparotto, L. H. S.; Gomes, J. F.; Tremiliosi-Filho, G. Straightforward synthesis of carbon-supported Ag nanoparticles and their application for the oxygen reduction reaction. Electrocatal. 2012, 3, 147–152.

    Article  CAS  Google Scholar 

  30. Demarconnay, L.; Coutanceau, C.; Léger, J. M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol. Electrochim. Acta 2004, 49, 4513–4521.

    Article  CAS  Google Scholar 

  31. Alia, S. M.; Duong, K.; Liu, T.; Jensen, K.; Yan, Y. Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 2012, 5, 1619–1624.

    Article  CAS  Google Scholar 

  32. Toh, H. S.; Batchelor-McAuley, C.; Tschulik, K.; Uhlemann, M.; Crossley, A.; Compton, R. G. The anodic stripping voltammetry of nanoparticles: Electrochemical evidence for the surface agglomeration of silver nanoparticles. Nanoscale, in press, DOI: 10.1039/C3NR00898C.

  33. Davies, T. J.; Compton, R. G. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory. J. Electroanal. Chem. 2005, 585, 63–82.

    Article  CAS  Google Scholar 

  34. Ward, K. R.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. Cyclic voltammetry of the EC’ mechanism at hemispherical particles and their arrays: The split wave. J. Phys. Chem. C 2011, 115, 11204–11215.

    Article  CAS  Google Scholar 

  35. Ward, K. R.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: Comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite. Phys. Chem. Chem. Phys. 2012, 14, 7264–7275.

    Article  CAS  Google Scholar 

  36. Wang, Y.; Ward, K. R.; Laborda, E.; Salter, C.; Crossley, A.; Jacobs, R. M. J.; Compton, R. G. A joint experimental and computational search for authentic nano-electrocatalytic effects: Electrooxidation of nitrite and L-ascorbate on gold nanoparticle-modified glassy carbon electrodes. Small 2013, 9, 478–486.

    Article  CAS  Google Scholar 

  37. Augustine, R.; Rajarathinam, K. Synthesis and characterization of silver nanoparticles and its immobilization on alginate coated sutures for the prevention of surgical wound infections and the in vitro release studies. Int. J. Nano Dim. 2012, 2, 205–212.

    CAS  Google Scholar 

  38. Zhou, Y. G.; Rees, N. V.; Compton, R. G. Electrode-nanoparticle collisions: The measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode. Chem. Phys. Lett. 2011, 514, 291–293.

    Article  CAS  Google Scholar 

  39. Ward Jones, S. E.; Campbell, F. W.; Baron, R.; Xiao, L.; Compton, R. G. Particle size and surface coverage effects in the stripping voltammetry of silver nanoparticles: Theory and experiment. J. Phys. Chem. C 2008, 112, 17820–17827.

    Article  CAS  Google Scholar 

  40. Divišek, J.; Kastening, B. Electrochemical generation and reactivity of the superoxide ion in aqueous solutions. J. Electroanal. Chem. Interfacial Electrochem. 1975, 65, 603–621.

    Article  Google Scholar 

  41. Sawyer, D. T. Electrochemistry for Chemists, 2nd Ed.; Wiley-Interscience: New York, 1995.

    Google Scholar 

  42. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd Ed.; John Wiley & Sons, Inc.: New York, 2001.

    Google Scholar 

  43. Compton, R. G.; Banks, C. E. Understanding Voltammetry, 2nd Ed.; World Scientific: London, 2011.

    Book  Google Scholar 

  44. Millero, F. J.; Huang, F.; Graham, T. B. Solubility of oxygen in some 1-1, 2-1, 1-2, and 2-2 electrolytes as a function of concentration at 25°C. J. Solution. Chem. 2003, 32, 473–487.

    Article  CAS  Google Scholar 

  45. Han, P.; Bartels, D. M. Temperature dependence of oxygen diffusion in H2O and D2O. J. Phys. Chem. 1996, 100, 5597–5602.

    Article  CAS  Google Scholar 

  46. Hitt, D. L.; Zakrzwski, C. M.; Thomas, M. A. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater. Struct. 2001, 10, 1163–1175.

    Article  CAS  Google Scholar 

  47. Goszner, K.; Körner, D.; Hite, R. On the catalytic activity of silver: I. activity, poisoning, and regeneration during the decomposition of hydrogen peroxide. J. Catal. 1972, 25, 245–253.

    Article  CAS  Google Scholar 

  48. Fox, M. A.; Akaba, R. Curve crossing in the cyclic voltammetric oxidation of 2-phenylnorbornene. Evidence for an ECE reaction pathway. J. Am. Chem. Soc. 1983, 105, 3460–3463.

    Article  CAS  Google Scholar 

  49. Merkulova, N. D.; Zhutaeva, G. V.; Shumilova, N. A.; Bagotzky, V. S. Reactions of hydrogen peroxide on a silver electrode in alkaline solution. Electrochim. Acta 1973, 18, 169–174.

    Article  CAS  Google Scholar 

  50. Amatore, C.; Savéant, J. M.; Tessier, D. Charge transfer at partially blocked surfaces: A model for the case of microscopic active and inactive sites. J. Electroanal. Chem. Interfacial Electrochem. 1983, 147, 39–51.

    Article  CAS  Google Scholar 

  51. Reller, H.; Kirowa-Eisner, F.; Gileadi, E. Ensembles of microelectrodes: A digital-simulation. J. Electroanal. Chem. Interfacial Electrochem. 1982, 138, 65–77.

    Article  CAS  Google Scholar 

  52. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes: The Art of Scientific Computing, 3rd Ed.; Cambridge University Press: Cambridge, 2007.

    Google Scholar 

  53. Wang, Y.; Laborda, E.; Ward, K. R.; Compton, R. G. Kinetic study of oxygen reduction reaction on electrodeposited gold nanoparticles of diameter 17 nm and 40 nm in 0.5 M sulfuric acid. Submitt. 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Compton.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, C.C.M., Laborda, E., Tschulik, K. et al. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape. Nano Res. 6, 511–524 (2013). https://doi.org/10.1007/s12274-013-0328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0328-4

Keywords

Navigation