Skip to main content
Log in

Wafer scale direct-write of Ge and Si nanostructures with conducting stamps and a modified mask aligner

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The broad availability of high throughput nanostructure fabrication is essential for advancement in nanoscale science. Large-scale manufacturing developed by the semiconductor industry is often too resource-intensive for medium scale laboratory prototyping. We demonstrate the inexpensive wafer scale directwrite of Ge and Si nanostructures with a 4-inch mask aligner retrofitted with a conducting microstructured stamp. A bias applied between the stamp and an underlying silicon substrate results in the reaction of diphenylgermane and diphenylsilane precursors at the stamp-substrate interface to yield the directwrite of Ge and Si nanostructures in determined locations. With the increasing number of outdated mask aligners available from the semiconductor industry and an extensive library of liquid precursors, this strategy provides facile, inexpensive, wafer scale semiconductor direct-write for applications such as electronics, photonics, and photovoltaics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilbur, J. L.; Kumar, A.; Kim, E.; Whitesides, G. M. Microfabrication by microcontact printing of self-assembled monolayers. Adv. Mater. 1994, 6, 600–604.

    Article  CAS  Google Scholar 

  2. Bernard, A.; Renault, J. P.; Michel, B.; Bosshard, H. R.; Delamarche, E. Microcontact printing of proteins. Adv. Mater. 2000, 12, 1067–1070.

    Article  CAS  Google Scholar 

  3. Wang, Z. B.; Zhang, P. P.; Kirkland, B.; Liu, Y. R.; Guan, J. J. Microcontact printing of polyelectrolytes on PEG using an unmodified PDMS stamp for micropatterning nanoparticles, DNA, proteins and cells. Soft Matter 2012, 8, 7630–7637.

    Article  CAS  Google Scholar 

  4. McConnell, K. I.; Slater, J. H.; Han, A.; West, J. L.; Suh, J. Microcontact printing for co-patterning cells and viruses for spatially controlled substrate-mediated gene delivery. Soft Matter 2011, 7, 4993–5001.

    Article  CAS  Google Scholar 

  5. Zhong, C.; Kapetanovic, A.; Deng, Y.; Rolandi, M. A chitin nanofiber ink for airbrushing, replica molding, and microcontact printing of self-assembled macro-, micro-, and nanostructures. Adv. Mater. 2011, 23, 4776–4781.

    Article  CAS  Google Scholar 

  6. Santhanam, V.; Andres, R. P. Microcontact printing of uniform nanoparticle srrays. Nano Lett. 2004, 4, 41–44.

    Article  CAS  Google Scholar 

  7. Arias, A. C.; MacKenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A. Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 2010, 110, 3–24.

    Article  CAS  Google Scholar 

  8. Winther-Jensen, B.; Krebs, F. C. High-conductivity large-area semi-transparent electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition. Sol. Energ. Mater. Sol. C 2006, 90, 123–132.

    Article  CAS  Google Scholar 

  9. Peroz, C.; Dhuey, S.; Cornet, M.; Vogler, M.; Olynick, D.; Cabrini, S. Single digit nanofabrication by step-and-repeat nanoimprint lithography. Nanotechnology 2012, 23, 015305.

    Article  CAS  Google Scholar 

  10. Ahn, S. H.; Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano 2009, 3, 2304–2310.

    Article  CAS  Google Scholar 

  11. Albonetti, C.; Martinez, J.; Losilla, N. S.; Greco, P.; Cavallini, M.; Borgatti, F.; Montecchi, M.; Pasquali, L.; Garcia, R.; Biscarini, F. Parallel-local anodic oxidation of silicon surfaces by soft stamps. Nanotechnology 2008, 19, 435303.

    Article  Google Scholar 

  12. Simeone, F. C.; Albonetti, C.; Cavallini, M. Progress in micro- and nanopatterning via electrochemical lithography. J. Phys. Chem. C 2009, 113, 18987–18994.

    Article  CAS  Google Scholar 

  13. Pantazi, A.; Sebastian, A.; Antonakopoulos, T. A.; Bächtold, P.; Bonaccio, A. R.; Bonan, J.; Cherubini, G.; Despont, M.; DiPietro, R. A.; Drechsler, U. et al. Probe-based ultrahigh-density storage technology. IBM J. Res. Dev. 2008, 52, 493–511.

    Article  CAS  Google Scholar 

  14. Pires, D.; Hedrick, J. L.; De Silva, A.; Frommer, J.; Gotsmann, B.; Wolf, H.; Despont, M.; Duerig, U.; Knoll, A. W. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 2010, 328, 732–735.

    Article  CAS  Google Scholar 

  15. Huo, F. W.; Zheng, Z. J.; Zheng, G. F.; Giam, L. R.; Zhang, H.; Mirkin, C. A. Polymer pen lithography. Science 2008, 321, 1658–1660.

    Article  CAS  Google Scholar 

  16. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A. “Dip-pen” nanolithography. Science 1999, 283, 661–663.

    Article  CAS  Google Scholar 

  17. Torrey, J. D.; Vasko, S. E.; Kapetanovic, A.; Zhu, Z.; Scholl, A.; Rolandi, M. Scanning probe direct-write of germanium nanostructures. Adv. Mater. 2010, 22, 4639–4642.

    Article  CAS  Google Scholar 

  18. Vasko, S. E.; Jiang, W. J.; Chen, R. Y.; Hanlen, R.; Torrey, J. D.; Dunham, S. T.; Rolandi, M. Insights into scanning probe high-field chemistry of diphenylgermane. Phys. Chem. Chem. Phys. 2011, 13, 4842–4845.

    Article  CAS  Google Scholar 

  19. Vasko, S. E.; Kapetanovic, A.; Talla, V.; Brasino, M.; Torrey, J. D.; Scholl, A.; Rolandi, M. Serial and parallel Si, Ge, and SiGe direct write with scanning probes and conductive stamps. Nano Lett. 2011, 11, 2386–2389.

    Article  CAS  Google Scholar 

  20. Vasko, S. E.; Jiang, W.; Lai, H.; Sadilek, M.; Dunham, S.; Rolandi, M. High-field chemistry of organometallic precursors for direct-write of germanium and silicon nanostructures. J. Mater. Chem. C 2013, 1, 282–289.

    Article  CAS  Google Scholar 

  21. Kan, M. TSMC’s 450 mm Wafer Production to Start in 2018, Following Delays PCWorld [Online]. 2012; http://www.pcworld.com/article/261892/tsmcs_450mm_wafer_production_to_start_in_2018_following_delays.html

    Google Scholar 

  22. Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elestomeric polymer. Nature 1998, 393, 146–149.

    Article  CAS  Google Scholar 

  23. Farrell, R. A.; Kinahan, N. T.; Hansel, S.; Stuen, K. O.; Petkov, N.; Shaw, M. T.; West, L. E.; Djara, V.; Dunne, R. J.; Varona, O. G. et al. Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly. Nanoscale 2012, 4, 3228–3236.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rolandi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, H., Vasko, S.E. & Rolandi, M. Wafer scale direct-write of Ge and Si nanostructures with conducting stamps and a modified mask aligner. Nano Res. 6, 263–268 (2013). https://doi.org/10.1007/s12274-013-0302-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0302-1

Keywords

Navigation