Skip to main content
Log in

Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Close-packed Ag pyramidal arrays have been fabricated by using inverted pyramidal pits on Si as a template and used to generate plentiful and homogeneous surface-enhanced Raman scattering (SERS) hot sites. The sharp nanotip and the four edges of the Ag pyramid result in strong electromagnetic field enhancement with an average enhancement factor (EF) of 2.84 × 107. Moreover, the features of the close-packed Ag pyramidal array can be well controlled, which allows SERS substrates with good reproducibility to be obtained. The relative standard deviation (RSD) was lower than 8.78% both across a single substrate and different batches of substrates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schierhorn, M.; Lee, S. J.; Boettcher, S. W.; Stucky, G. D.; Moskovits, M. Metal-silica hybrid nanostructures for surface-enhanced Raman spectroscopy. Adv. Mater. 2006, 18, 2829–2832.

    Article  CAS  Google Scholar 

  2. Fang, J.; Du, S.; Lebedkin, S.; Li, Z.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 5006–5013.

    Article  CAS  Google Scholar 

  3. Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 338A–346A.

    Article  CAS  Google Scholar 

  4. Lee, S. J.; Guan, Z.; Xu, H.; Moskovits, M. Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS. J. Phys. Chem. C 2007, 111, 17985–17988.

    Article  CAS  Google Scholar 

  5. Oh, Y. J.; Jeong, K. H. Glass nanopillar arrays with nanogaprich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 2012, 24, 2234–2237.

    Article  CAS  Google Scholar 

  6. Lu, G.; Li, H.; Wu, S.; Chen, P.; Zhang, H. High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale 2012, 4, 860–863.

    Article  CAS  Google Scholar 

  7. Mu, C.; Zhang, J. P.; Xu, D. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology 2010, 21, 015604.

    Article  Google Scholar 

  8. Wang, Y.; Becker, M.; Wang, L.; Liu, J.; Scholz, R.; Peng, J.; Goesele, U.; Christiansen, S.; Kim, D. H.; Steinhart, M. Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions. Nano Lett. 2009, 9, 2384–2389.

    Article  CAS  Google Scholar 

  9. Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing. Biosens. Bioelectron. 2009, 24, 1531–1535.

    Article  CAS  Google Scholar 

  10. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

    Article  CAS  Google Scholar 

  11. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman-spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

    Article  CAS  Google Scholar 

  12. Sajanlal, P. R.; Pradeep, T. Mesoflowers: A new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res. 2009, 2, 306–320.

    Article  CAS  Google Scholar 

  13. Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman-spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

    Article  CAS  Google Scholar 

  14. Kerker, M.; Wang, D. S.; Chew, H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: Errata. Appl. Opt. 1980, 19, 4159–4174.

    Article  CAS  Google Scholar 

  15. Panigrahi, S.; Praharaj, S.; Basu, S.; Ghosh, S. K.; Jana, S.; Pande, S.; Vo-Dinh, T.; Jiang, H.; Pal, T. Self-assembly of silver nanoparticles: Synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering. J. Phys. Chem. B 2006, 110, 13436–13444.

    Article  CAS  Google Scholar 

  16. Braun, G.; Lee, S. J.; Dante, M.; Nguyen, T. Q.; Moskovits, M.; Reich, N. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc. 2007, 129, 6378–6379.

    Article  CAS  Google Scholar 

  17. Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229–1233.

    Article  CAS  Google Scholar 

  18. Stiles, P.; Dieringer, J.; Shah, N. C.; Van Duyne, R. P Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626.

    Article  CAS  Google Scholar 

  19. Wu, W.; Hu, M.; Ou, F. S.; Li, Z.; Williams, R. S. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 2010, 21, 255502.

    Article  Google Scholar 

  20. Yang, Y.; Li, Z. Y.; Yamaguchi, K.; Tanemura, M.; Huang, Z.; Jiang, D.; Chen, Y.; Zhou, F.; Nogami, M. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 2012, 4, 2663–2669.

    Article  CAS  Google Scholar 

  21. Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 2009, 394, 1729–1745.

    Article  CAS  Google Scholar 

  22. Schierhorn, M.; Lee, S. J.; Boettcher, S. W.; Stucky, G. D.; Moskovits, M. Metal-silica hybrid nanostructures for surface-enhanced Raman spectroscopy. Adv. Mater. 2006, 18, 2829–2832.

    Article  CAS  Google Scholar 

  23. Li, X.; Hu, H.; Li, D.; Shen, Z.; Xiong, Q.; Li, S.; Fan, H. J. Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate. ACS Appl. Mater. Interf. 2012, 4, 2180–2185.

    Article  CAS  Google Scholar 

  24. Krishnamoorthy, S.; Krishnan, S.; Thoniyot, P.; Low, H. Y. Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography. ACS Appl. Mater. Interf. 2011, 3, 1033–1040.

    Article  CAS  Google Scholar 

  25. Qian, L.; Mookherjee, R. Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res. 2011, 4, 1117–1128.

    Article  CAS  Google Scholar 

  26. Xu, H. B.; Lu, N.; Qi, D. P.; Hao, J. Y.; Gao, L. G.; Zhang, B.; Chi, L. F. Biomimetic antireflective Si nanopillar arrays. Small 2008, 4, 1972–1975.

    Article  CAS  Google Scholar 

  27. Wang, Y. D.; Lu, N.; Xu, H. B.; Shi, G.; Xu, M. J.; Lin, X. W.; Li, H. B.; Wang, W. T.; Qi, D. P.; Lu, Y. Q.; Chi, L. F. Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings. Nano Res. 2010, 3, 520–527.

    Article  CAS  Google Scholar 

  28. Zeng, Z. F.; Wang, Y. D.; Shi, S. L.; Wang, L. F.; Guo, X. H.; Lu, N. On-plate selective enrichment and self-desalting of peptides/proteins for direct MALDI MS analysis. Anal. Chem. 2012, 84, 2118–2123.

    Article  CAS  Google Scholar 

  29. Wang, W. T.; Lu, N.; Hao, J. Y.; Xu, H. B.; Qi, D. P.; Chi, L. F. Self-assembled monolayer islands masked chemical etching for broadband antireflective silicon surfaces. J. Phys. Chem. C 2010, 114, 1989–1995.

    Article  CAS  Google Scholar 

  30. Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgartel, H. Anisotropic etching of crystalline silicon in alkaline solutions. J. Electrochem. Soc. 1990, 137, 3612–3626.

    Article  CAS  Google Scholar 

  31. Jung, H. Y.; Park, Y. K.; Park, S.; Kim, S. K. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles. Anal. Chim. Acta 2007, 602, 236–243.

    Article  CAS  Google Scholar 

  32. Mahmoud, M. A.; El-Sayed, M. A. Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields. Nano Lett. 2009, 9, 3025–3031.

    Article  CAS  Google Scholar 

  33. Biggs, K. B.; Camden, J. P.; Anker, J. N.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: Determination of the sticking probability and detection limit time. J. Phys. Chem. A 2009, 113, 4581–4586.

    Article  CAS  Google Scholar 

  34. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109, 11279–11285.

    Article  CAS  Google Scholar 

  35. Linn, N. C.; Sun, C. H.; Arya, A.; Jiang, P.; Jiang, B. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness. Nanotechnology 2009, 20, 225303.

    Article  Google Scholar 

  36. Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    Article  CAS  Google Scholar 

  37. Fang, Y.; Seong, N. H.; Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388–392.

    Article  CAS  Google Scholar 

  38. Ji, N.; Ruan, W.; Wang, C.; Lu, Z.; Zhao, B. Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference. Langmuir 2009, 25, 11869–11873.

    Article  CAS  Google Scholar 

  39. Gui, J.; Stern, D.; Frank, D; Lu, F.; Zapien, D; Hubbard, A. Adsorption and surface structural chemistry of thiophenol, benzyl mercaptan, and alkyl mercaptans. Comparative studies at Ag(111) and Pt(111) electrodes by means of Auger spectroscopy, electron energy loss spectroscopy, low-energy electron diffraction, and electrochemistry. Langmuir 1991, 7, 955–963.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Lu, N., Wang, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 6, 159–166 (2013). https://doi.org/10.1007/s12274-013-0291-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0291-0

Keywords

Navigation