Skip to main content
Log in

Shell-doping of GaAs nanowires with Si for n-type conductivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate the potential of using Si as n-type dopant in GaAs nanowires grown by molecular beam epitaxy. The amphoteric behavior of Si that typically accompanies the vapor-liquid-solid growth mode is adequately controlled when a shell doping scheme is utilized instead, i.e. when a Si-doped GaAs shell layer is grown conformally around the undoped GaAs nanowire core in the vapor-solid mode. The incorporation site of Si was evaluated by Raman spectroscopy, and correlated with the growth conditions of the doped shell. In that way, we identified a growth window that ensures the incorporation of Si as donor, and obtained donor concentrations up to 1 × 1019 cm−3, with the compensation level by Si acceptors remaining below 10%. Finally, resistivity measurements on planarized shell-doped nanowire ensembles were employed to probe the doping efficiency and the surface depletion of free-carriers. The achievement of n-type conductivity for nanowires is essential for the realization of functional devices, and is particularly significant when a dopant as well understood and advantageous as Si is employed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mårtensson, T.; Svensson, C. P. T.; Wacaser, B. A.; Larsson, M. W.; Seifert, W.; Deppert, K.; Gustafsson, A.; Wallenberg, L. R.; Samuelson, L. Epitaxial III–V nanowires on silicon. Nano Lett. 2004, 4, 1987–1990.

    Article  Google Scholar 

  2. Bakkers, E. P. A. M.; Borgström, M. T.; Verheijen, M. A. Epitaxial growth of III—V nanowires on group IV substrates. MRS Bull. 2007, 32, 117–122.

    Article  CAS  Google Scholar 

  3. Piccin, M.; Bais, G.; Grillo, V.; Jabeen, F.; De Franceschi, S.; Carlino, E.; Lazzarino, M.; Romanato, F.; Businaro, L.; Rubini, S.; Martelli, F.; Franciosi, A. Growth by molecular beam epitaxy and electrical characterization of GaAs nanowires. Physica E 2007, 37, 134–137.

    Article  CAS  Google Scholar 

  4. Gutsche, C.; Lysov, A.; Regolin, I.; Blekker, K.; Prost, W.; Tegude, F. J. N-type doping of vapor-liquid-solid grown GaAs nanowires. Nanoscale Res. Lett. 2011, 6, 65.

    Google Scholar 

  5. Hilse, M.; Ramsteiner, M.; Breuer, S.; Geelhaar, L.; Riechert, H. Incorporation of the dopants Si and Be into GaAs nanowires. Appl. Phys. Lett. 2010, 96, 193104.

    Article  Google Scholar 

  6. Dufouleur, J.; Colombo, C.; Garma, T.; Ketterer, B.; Uccelli, E.; Nicotra, M.; Fontcuberta i Morral, A. P-doping mechanisms in catalyst-free gallium arsenide nanowires. Nano Lett. 2010, 10, 1734–1740.

    Article  CAS  Google Scholar 

  7. Ketterer, B.; Mikheev, E.; Uccelli, E.; Fontcuberta i Morral, A. Compensation mechanism in silicon-doped gallium arsenide nanowires. Appl. Phys. Lett. 2010, 97, 223103.

    Article  Google Scholar 

  8. Schmidt, V.; Wittemann, J. V.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702.

    Article  CAS  Google Scholar 

  9. Bar-Sadan, M.; Barthel, J.; Shtrikman, H.; Houben, L. Direct imaging of single Au atoms within GaAs nanowires. Nano Lett. 2012, 12, 2352–2356.

    Article  CAS  Google Scholar 

  10. Tambe, M. J.; Ren, S.; Gradecak, S. Effects of gold diffusion on n-type doping of GaAs nanowires. Nano Lett. 2010, 10, 4584–4589.

    Article  CAS  Google Scholar 

  11. Breuer, S.; Pfüller, C.; Flissikowski, T.; Brandt, O.; Grahn, H. T.; Geelhaar, L.; Riechert, H. Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett. 2011, 11, 1276–1279.

    Article  CAS  Google Scholar 

  12. Tok, E. S.; Neave, J. H.; Ashwin, M. J.; Joyce, B. A.; Jones, T. S. Growth of Si-doped GaAs(110) thin films by molecular beam epitaxy; Si site occupation and the role of arsenic. J. Appl. Phys. 1998, 83, 4160–4167.

    Article  CAS  Google Scholar 

  13. Ramsteiner, M.; Wagner, J.; Ennen, H.; Maier, M. Resonance Raman scattering of Si local vibrational modes in GaAs. Phys. Rev. B 1988, 38, 10669–10676.

    Article  CAS  Google Scholar 

  14. Aspnes, D.; Studna, A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009.

    Article  CAS  Google Scholar 

  15. Chia, A. C. E.; LaPierre, R. R. Contact planarization of ensemble nanowires. Nanotechnology 2011, 22, 245304.

    Article  CAS  Google Scholar 

  16. Heon Kim, Y.; Woo Park, D.; Jun Lee, S. Gallium-droplet behaviors of self-catalyzed GaAs nanowires: A transmission electron microscopy study. Appl. Phys. Lett. 2012, 100, 033117.

    Article  Google Scholar 

  17. Tok, E. S.; Jones, T. S.; Neave, J. H.; Zhang, J.; Joyce, B. A. Is the arsenic incorporation kinetics important when growing GaAs(001), (110), and (111)A films? Appl. Phys. Lett. 1997, 71, 3278–3280.

    Article  CAS  Google Scholar 

  18. López, M.; Nomura, Y. Surface diffusion length of Ga adatoms in molecular-beam epitaxy on GaAs(100)-(110) facet structures. J. Cryst. Growth 1995, 150, 68–72.

    Article  Google Scholar 

  19. Rudolph, D.; Hertenberger, S.; Bolte, S.; Paosangthong, W.; Spirkoska, D.; Döblinger, M.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Direct observation of a noncatalytic growth regime for GaAs nanowires. Nano Lett. 2011, 11, 3848–3854.

    Article  CAS  Google Scholar 

  20. Ambrosini, S.; Fanetti, M.; Grillo, V.; Franciosi, A.; Rubini, S. Vapor-liquid-solid and vapor-solid growth of self-catalyzed GaAs nanowires. AIP Advances 2011, 1, 042142.

    Article  Google Scholar 

  21. Ashwin, M. J.; Newman, R. C.; Muraki, K. The infrared vibrational absorption spectrum of the Si-X defect present in heavily Si doped GaAs. J. Appl. Phys. 1997, 82, 137.

    Google Scholar 

  22. Wallentin, J.; Borgström, M. T. Doping of semiconductor nanowires. J. Mater. Res. 2011, 26, 2142–2156.

    Article  CAS  Google Scholar 

  23. Colombo, C.; Heiß, M.; Grätzel, M.; Fontcuberta i Morral, A. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009, 94, 173108.

    Article  Google Scholar 

  24. Northrup, J.; Zhang, S. Dopant and defect energetics: Si in GaAs. Phys. Rev. B 1993, 47, 6791–6794.

    Article  CAS  Google Scholar 

  25. Neave, J. H.; Dobson, P. J.; Harris, J. J.; Dawson, P.; Joyce, B. A. Silicon doping of MBE-grown GaAs films. Appl. Phys. A 1983, 32, 195–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Dimakis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimakis, E., Ramsteiner, M., Tahraoui, A. et al. Shell-doping of GaAs nanowires with Si for n-type conductivity. Nano Res. 5, 796–804 (2012). https://doi.org/10.1007/s12274-012-0263-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0263-9

Keywords

Navigation